Design, Simulation and Kinematic Verification of A Multi-Loop Ankle-foot Prosthetic Mechanism

Inspired by the bionic characteristics of ankle and calf skeletal muscles, a novel ankle-foot prosthesis (AFP) with variable stiffness mechanisms (VSMs) is proposed to assist transtibial amputees to restore ankle plantarflexion-dorsiflexion. The prosthesis is designed in the form of a spring-loaded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-09, Vol.8 (9), p.1-8
Hauptverfasser: Song, Majun, Chen, Weihai, Guo, Sheng, Li, Zhongyi, Rasmussen, John, Bai, Shaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspired by the bionic characteristics of ankle and calf skeletal muscles, a novel ankle-foot prosthesis (AFP) with variable stiffness mechanisms (VSMs) is proposed to assist transtibial amputees to restore ankle plantarflexion-dorsiflexion. The prosthesis is designed in the form of a spring-loaded three-loop linkage for function of continuous energy absorption-release in gait stance phase, which can facilitate ankle plantarflexion- dorsiflexion and keep human body move forward steadily. A compliant crank slider mechanism is also developed to power-assist AFP mechanism to improve the adaptive compliant contact between prosthesis and ground. In this paper, mechanics models of the ATP are developed to reveal the variable moment of the ankle joint, which is verified by human-machine simulation. An AFP prototype is built to validate the design experimentally. The results demonstrate that the AFP mechanism has the advantages of low power consumption, human-like joint moment profile. In particular, it is shown that the AFP mechanism with 54W power provided in toe-off phase can reduce the peak power of the motor by 24%.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2023.3300255