Multi-GAT: A Graphical Attention-Based Hierarchical Multimodal Representation Learning Approach for Human Activity Recognition
Recognizing human activities is one of the crucial capabilities that a robot needs to have to be useful around people. Although modern robots are equipped with various types of sensors, human activity recognition (HAR) still remains a challenging problem, particularly in the presence of noisy sensor...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2021-04, Vol.6 (2), p.1729-1736 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recognizing human activities is one of the crucial capabilities that a robot needs to have to be useful around people. Although modern robots are equipped with various types of sensors, human activity recognition (HAR) still remains a challenging problem, particularly in the presence of noisy sensor data. In this work, we introduce a multimodal graphical attention-based HAR approach, called Multi-GAT, which hierarchically learns complementary multimodal features. We develop a multimodal mixture-of-experts model to disentangle and extract salient modality-specific features that enable feature interactions. Additionally, we introduce a novel message-passing based graphical attention approach to capture cross-modal relation for extracting complementary multimodal features. The experimental results on two multimodal human activity datasets suggest that Multi-GAT outperformed state-of-the-art HAR algorithms across all datasets and metrics tested. Finally, the experimental results with noisy sensor data indicate that Multi-GAT consistently outperforms all the evaluated baselines. The robust performance suggests that Multi-GAT can enable seamless human-robot collaboration in noisy human environments. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2021.3059624 |