T-PFC: A Trajectory-Optimized Perturbation Feedback Control Approach
Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic pert...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-10, Vol.4 (4), p.3457-3464 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Traditional stochastic optimal control methods that attempt to obtain an optimal feedback policy for nonlinear systems are computationally intractable. In this letter, we derive a decoupling principle between the open-loop plan, and the closed-loop feedback gains, which leads to a deterministic perturbation feedback control based solution to fully observable stochastic optimal control problems, that is near-optimal. Extensive numerical simulations validate the theory, revealing a wide range of applicability, coping with medium levels of noise. The performance is compared against a set of baselines in several difficult robotic planning and control examples that show near identical performance to nonlinear model predictive control while requiring much lesser computational effort. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2019.2926948 |