Convergence and Consistency Analysis for a 3-D Invariant-EKF SLAM

In this letter, we investigate the convergence and consistency properties of an invariant-extended Kalman filter (RI-EKF) based simultaneous localization and mapping (SLAM) algorithm. Basic convergence properties of this algorithm are proven. These proofs do not require the restrictive assumption th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2017-04, Vol.2 (2), p.733-740
Hauptverfasser: Teng Zhang, Kanzhi Wu, Jingwei Song, Shoudong Huang, Dissanayake, Gamini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we investigate the convergence and consistency properties of an invariant-extended Kalman filter (RI-EKF) based simultaneous localization and mapping (SLAM) algorithm. Basic convergence properties of this algorithm are proven. These proofs do not require the restrictive assumption that the Jacobians of the motion and observation models need to be evaluated at the ground truth. It is also shown that the output of RI-EKF is invariant under any stochastic rigid body transformation in contrast to SO (3) based EKF SLAM algorithm (SO(3)-EKF) that is only invariant under deterministic rigid body transformation. Implications of these invariance properties on the consistency of the estimator are also discussed. Monte Carlo simulation results demonstrate that RI-EKF outperforms SO(3)-EKF, Robocentric-EKF and the "First Estimates Jacobian" EKF, for three-dimensional point feature-based SLAM.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2017.2651376