100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision
Substitution of a single aspheric microlens (array) for a complex multilens system results in not only smaller size, lighter weight, compacter geometry, and even possibly lower cost of an optical system, but also significant improvement of its optical performance such as better imaging quality. Howe...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2009-10, Vol.21 (20), p.1535-1537 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Substitution of a single aspheric microlens (array) for a complex multilens system results in not only smaller size, lighter weight, compacter geometry, and even possibly lower cost of an optical system, but also significant improvement of its optical performance such as better imaging quality. However, fabrication of aspheric microlens or microlens array is technically challenging because conventional technologies used for macro-sized aspheres like single-point diamond milling, and those for spherical microlens like thermal reflow, are not capable of defining a complicated lens profile in an area as small as several to tens of micrometers. Here we solve the problem by using femtosecond laser micro-nanofabrication via two photon polymerization. Not only well-defined single lens, but also 100% filling ratio aspheric microlens array were readily produced. The average error of the lens profile is only 17.3 nm deviated from the theoretical model, the smallest error reported so far. |
---|---|
ISSN: | 1041-1135 1941-0174 |
DOI: | 10.1109/LPT.2009.2029346 |