Quadrature-Based Restarted Arnoldi Method for Fast 3-D TEM Forward Modeling of Large-Scale Models

For large-scale geophysical models, the order of the coefficient matrix in 3-D transient electromagnetics (TEMs) forward modeling can reach millions or even tens of millions. Balancing computational efficiency and memory usage presents a challenge worthy of in-depth exploration. In this letter, we u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2025, Vol.22, p.1-5
Hauptverfasser: Lu, Kailiang, Yue, Jianhua, Zhou, Jianmei, Fan, Ya'Nan, Fan, Kerui, Li, He, Li, Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For large-scale geophysical models, the order of the coefficient matrix in 3-D transient electromagnetics (TEMs) forward modeling can reach millions or even tens of millions. Balancing computational efficiency and memory usage presents a challenge worthy of in-depth exploration. In this letter, we utilize an integral representation of the iterative error in the Arnoldi method to construct an efficient quadrature-based restarted forward algorithm. First, the mimetic finite volume (MFV) method on a staggered hexahedral grid is employed to discretize the time-domain Maxwell's equations, expressing the TEM response after the step-off waveform shutoff as the product of the matrix exponential function f({\text {A}}) and vector b. Then, using Cauchy's integral formula, the expression of {f}({\text {A}}){b} is transformed into an integral form and approximated using the restarted Arnoldi (RA) algorithm. Our method does not require solving linear systems and can leverage GPU parallel technology and optimize the RA algorithm parameters to enhance computational efficiency. Comparative studies with other numerical methods validate the advantages and accuracy of our approach, which numerical example demonstrates can fully achieve large-scale fast 3-D TEM forward modeling.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2024.3495716