EKDInformer-LTEDH: An Informer-Based Environmental Knowledge-Driven Prediction Model for Long-Term Evaporation Duct Height

To accurately cognize the long-term variations in evaporation duct height (EDH), this letter develops a novel environmental knowledge-driven prediction model based on the Informer for long-term EDH (EKDInformer-LTEDH). The model utilizes the Informer's powerful time series (TS) processing abili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Ji, Hanjie, Wei, Yiwen, Zhao, Qiang, Guo, Lixin, Zhang, Jinpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To accurately cognize the long-term variations in evaporation duct height (EDH), this letter develops a novel environmental knowledge-driven prediction model based on the Informer for long-term EDH (EKDInformer-LTEDH). The model utilizes the Informer's powerful time series (TS) processing abilities to capture long-term dependencies in EDH. Considering the influence of the marine environment on EDH, this letter adopts a knowledge-driven method, which incorporates multiple MEPs as prior knowledge inputs into the model. The results of testing the performance show that the EKDInformer-LTEDH model has significant advantages over other models in long-term EDH prediction. Additionally, integrating MEPs into the model as environmental priori knowledge reduces prediction errors and significantly improves its long-term EDH prediction performance.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2024.3468290