Toward Efficient Hyperspectral Anomaly Detection With Subspace Transformation Learning

Current research in hyperspectral anomaly detection often incorporates low-rank (LR) or total variation (TV) priors to encode the background matrix. However, applying such regularizers to the detection model increases the computational burden. In this letter, we propose a subspace transformation lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Li, Qian, Wang, Changbo, Yu, Laihang, Zhang, Jian, Zhang, Li, Liu, Kai, Shen, Xiangfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current research in hyperspectral anomaly detection often incorporates low-rank (LR) or total variation (TV) priors to encode the background matrix. However, applying such regularizers to the detection model increases the computational burden. In this letter, we propose a subspace transformation learning-based anomaly detector (termed STLAD). In STLAD, we employ an orthogonal transformation to represent the background in its subspace, where both the background and the transformation share spatial smoothness prior and approximate sparsity properties based on carefully selected basis vectors. By leveraging this background characterization, the anomaly component can be effectively described using the \ell _{2,1} mixed norm. To solve the STLAD model, we design an alternating direction method of multipliers (ADMM) with guaranteed convergence. Experiments conducted on benchmark hyperspectral datasets demonstrate that STLAD outperforms several state-of-the-art anomaly detection methods. The demo of STLAD will be publicly available at https://github.com/XiangfeiShen/STLAD .
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2024.3404951