Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection

This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Sugimoto, Ryu, Natsuaki, Ryo, Nakamura, Ryosuke, Tsutsumi, Chiaki, Yamaguchi, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Sugimoto, Ryu
Natsuaki, Ryo
Nakamura, Ryosuke
Tsutsumi, Chiaki
Yamaguchi, Yoshio
description This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.
doi_str_mv 10.1109/LGRS.2023.3346378
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2023_3346378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10371285</ieee_id><sourcerecordid>2911488510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-730f597c03f4874acfd03dca9ef786b2c6d865a4b29355327d2516328f8a02603</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhYMoWKsPILgYcJ06P5nMxF3pn0JBMS24C5PpTZmSZOLMVPEVfGoT6sLVvXDOuefyRdEtwRNCcPawXr3lE4opmzCWpEzIs2hEOJcx5oKcD3vCY57J98voyvsDxjSRUoyin41pAOXgDHiUaxVCv7Z79Gq_wKE5aNt01ptgbIu2flAWrYemrAFNP8GpPSDTog30LqfqOO9UMKpGc9so0_pHNO262vRnh3ywaGkd-IDmxoejK1Wroe8IoAf9OrqoVO3h5m-Oo-1ysZk9xeuX1fNsuo41lVmIBcMVz4TGrEqkSJSudpjttMqgEjItqU53MuUqKWnGOGdU7CgnKaOykgrTFLNxdH-62zn7cezfKQ726Nq-sqAZIT0XTgYXObm0s947qIrOmUa574LgYkBeDMiLAXnxh7zP3J0yBgD--ZkgVHL2C5sJfso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911488510</pqid></control><display><type>article</type><title>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Sugimoto, Ryu ; Natsuaki, Ryo ; Nakamura, Ryosuke ; Tsutsumi, Chiaki ; Yamaguchi, Yoshio</creator><creatorcontrib>Sugimoto, Ryu ; Natsuaki, Ryo ; Nakamura, Ryosuke ; Tsutsumi, Chiaki ; Yamaguchi, Yoshio</creatorcontrib><description>This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3346378</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Decomposition ; Deforestation ; Detection ; Dual polarization ; European Space Agency ; forest disturbance detection ; Forest management ; Forests ; Rainforests ; SAR (radar) ; Satellite constellations ; Scattering ; scattering power decomposition ; Sentinel-1 ; Spatial discrimination ; Spatial resolution ; Synthetic aperture radar ; Time series ; Time series analysis ; tropical forests ; Vegetation mapping</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-730f597c03f4874acfd03dca9ef786b2c6d865a4b29355327d2516328f8a02603</cites><orcidid>0000-0001-8594-9263 ; 0000-0003-2291-4375 ; 0000-0003-4144-8760 ; 0000-0002-0838-2977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10371285$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids></links><search><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Natsuaki, Ryo</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Tsutsumi, Chiaki</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><title>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>Deforestation</subject><subject>Detection</subject><subject>Dual polarization</subject><subject>European Space Agency</subject><subject>forest disturbance detection</subject><subject>Forest management</subject><subject>Forests</subject><subject>Rainforests</subject><subject>SAR (radar)</subject><subject>Satellite constellations</subject><subject>Scattering</subject><subject>scattering power decomposition</subject><subject>Sentinel-1</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Synthetic aperture radar</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>tropical forests</subject><subject>Vegetation mapping</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhYMoWKsPILgYcJ06P5nMxF3pn0JBMS24C5PpTZmSZOLMVPEVfGoT6sLVvXDOuefyRdEtwRNCcPawXr3lE4opmzCWpEzIs2hEOJcx5oKcD3vCY57J98voyvsDxjSRUoyin41pAOXgDHiUaxVCv7Z79Gq_wKE5aNt01ptgbIu2flAWrYemrAFNP8GpPSDTog30LqfqOO9UMKpGc9so0_pHNO262vRnh3ywaGkd-IDmxoejK1Wroe8IoAf9OrqoVO3h5m-Oo-1ysZk9xeuX1fNsuo41lVmIBcMVz4TGrEqkSJSudpjttMqgEjItqU53MuUqKWnGOGdU7CgnKaOykgrTFLNxdH-62zn7cezfKQ726Nq-sqAZIT0XTgYXObm0s947qIrOmUa574LgYkBeDMiLAXnxh7zP3J0yBgD--ZkgVHL2C5sJfso</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sugimoto, Ryu</creator><creator>Natsuaki, Ryo</creator><creator>Nakamura, Ryosuke</creator><creator>Tsutsumi, Chiaki</creator><creator>Yamaguchi, Yoshio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8594-9263</orcidid><orcidid>https://orcid.org/0000-0003-2291-4375</orcidid><orcidid>https://orcid.org/0000-0003-4144-8760</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid></search><sort><creationdate>2024</creationdate><title>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</title><author>Sugimoto, Ryu ; Natsuaki, Ryo ; Nakamura, Ryosuke ; Tsutsumi, Chiaki ; Yamaguchi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-730f597c03f4874acfd03dca9ef786b2c6d865a4b29355327d2516328f8a02603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>Deforestation</topic><topic>Detection</topic><topic>Dual polarization</topic><topic>European Space Agency</topic><topic>forest disturbance detection</topic><topic>Forest management</topic><topic>Forests</topic><topic>Rainforests</topic><topic>SAR (radar)</topic><topic>Satellite constellations</topic><topic>Scattering</topic><topic>scattering power decomposition</topic><topic>Sentinel-1</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Synthetic aperture radar</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>tropical forests</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Natsuaki, Ryo</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Tsutsumi, Chiaki</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugimoto, Ryu</au><au>Natsuaki, Ryo</au><au>Nakamura, Ryosuke</au><au>Tsutsumi, Chiaki</au><au>Yamaguchi, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3346378</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8594-9263</orcidid><orcidid>https://orcid.org/0000-0003-2291-4375</orcidid><orcidid>https://orcid.org/0000-0003-4144-8760</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2023_3346378
source IEEE Electronic Library (IEL)
subjects Algorithms
Decomposition
Deforestation
Detection
Dual polarization
European Space Agency
forest disturbance detection
Forest management
Forests
Rainforests
SAR (radar)
Satellite constellations
Scattering
scattering power decomposition
Sentinel-1
Spatial discrimination
Spatial resolution
Synthetic aperture radar
Time series
Time series analysis
tropical forests
Vegetation mapping
title Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Scattering%20Power%20Decomposition%20Using%20Ensemble%20Average%20in%20Temporal-Spatial%20Domains:%20Application%20to%20Forest%20Disturbance%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Sugimoto,%20Ryu&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3346378&rft_dat=%3Cproquest_cross%3E2911488510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911488510&rft_id=info:pmid/&rft_ieee_id=10371285&rfr_iscdi=true