Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection
This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but a...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Sugimoto, Ryu Natsuaki, Ryo Nakamura, Ryosuke Tsutsumi, Chiaki Yamaguchi, Yoshio |
description | This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months. |
doi_str_mv | 10.1109/LGRS.2023.3346378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2023_3346378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10371285</ieee_id><sourcerecordid>2911488510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-730f597c03f4874acfd03dca9ef786b2c6d865a4b29355327d2516328f8a02603</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhYMoWKsPILgYcJ06P5nMxF3pn0JBMS24C5PpTZmSZOLMVPEVfGoT6sLVvXDOuefyRdEtwRNCcPawXr3lE4opmzCWpEzIs2hEOJcx5oKcD3vCY57J98voyvsDxjSRUoyin41pAOXgDHiUaxVCv7Z79Gq_wKE5aNt01ptgbIu2flAWrYemrAFNP8GpPSDTog30LqfqOO9UMKpGc9so0_pHNO262vRnh3ywaGkd-IDmxoejK1Wroe8IoAf9OrqoVO3h5m-Oo-1ysZk9xeuX1fNsuo41lVmIBcMVz4TGrEqkSJSudpjttMqgEjItqU53MuUqKWnGOGdU7CgnKaOykgrTFLNxdH-62zn7cezfKQ726Nq-sqAZIT0XTgYXObm0s947qIrOmUa574LgYkBeDMiLAXnxh7zP3J0yBgD--ZkgVHL2C5sJfso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911488510</pqid></control><display><type>article</type><title>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Sugimoto, Ryu ; Natsuaki, Ryo ; Nakamura, Ryosuke ; Tsutsumi, Chiaki ; Yamaguchi, Yoshio</creator><creatorcontrib>Sugimoto, Ryu ; Natsuaki, Ryo ; Nakamura, Ryosuke ; Tsutsumi, Chiaki ; Yamaguchi, Yoshio</creatorcontrib><description>This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3346378</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Decomposition ; Deforestation ; Detection ; Dual polarization ; European Space Agency ; forest disturbance detection ; Forest management ; Forests ; Rainforests ; SAR (radar) ; Satellite constellations ; Scattering ; scattering power decomposition ; Sentinel-1 ; Spatial discrimination ; Spatial resolution ; Synthetic aperture radar ; Time series ; Time series analysis ; tropical forests ; Vegetation mapping</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-730f597c03f4874acfd03dca9ef786b2c6d865a4b29355327d2516328f8a02603</cites><orcidid>0000-0001-8594-9263 ; 0000-0003-2291-4375 ; 0000-0003-4144-8760 ; 0000-0002-0838-2977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10371285$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,4025,27927,27928,27929,54762</link.rule.ids></links><search><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Natsuaki, Ryo</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Tsutsumi, Chiaki</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><title>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>Deforestation</subject><subject>Detection</subject><subject>Dual polarization</subject><subject>European Space Agency</subject><subject>forest disturbance detection</subject><subject>Forest management</subject><subject>Forests</subject><subject>Rainforests</subject><subject>SAR (radar)</subject><subject>Satellite constellations</subject><subject>Scattering</subject><subject>scattering power decomposition</subject><subject>Sentinel-1</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Synthetic aperture radar</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>tropical forests</subject><subject>Vegetation mapping</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhYMoWKsPILgYcJ06P5nMxF3pn0JBMS24C5PpTZmSZOLMVPEVfGoT6sLVvXDOuefyRdEtwRNCcPawXr3lE4opmzCWpEzIs2hEOJcx5oKcD3vCY57J98voyvsDxjSRUoyin41pAOXgDHiUaxVCv7Z79Gq_wKE5aNt01ptgbIu2flAWrYemrAFNP8GpPSDTog30LqfqOO9UMKpGc9so0_pHNO262vRnh3ywaGkd-IDmxoejK1Wroe8IoAf9OrqoVO3h5m-Oo-1ysZk9xeuX1fNsuo41lVmIBcMVz4TGrEqkSJSudpjttMqgEjItqU53MuUqKWnGOGdU7CgnKaOykgrTFLNxdH-62zn7cezfKQ726Nq-sqAZIT0XTgYXObm0s947qIrOmUa574LgYkBeDMiLAXnxh7zP3J0yBgD--ZkgVHL2C5sJfso</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sugimoto, Ryu</creator><creator>Natsuaki, Ryo</creator><creator>Nakamura, Ryosuke</creator><creator>Tsutsumi, Chiaki</creator><creator>Yamaguchi, Yoshio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8594-9263</orcidid><orcidid>https://orcid.org/0000-0003-2291-4375</orcidid><orcidid>https://orcid.org/0000-0003-4144-8760</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid></search><sort><creationdate>2024</creationdate><title>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</title><author>Sugimoto, Ryu ; Natsuaki, Ryo ; Nakamura, Ryosuke ; Tsutsumi, Chiaki ; Yamaguchi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-730f597c03f4874acfd03dca9ef786b2c6d865a4b29355327d2516328f8a02603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>Deforestation</topic><topic>Detection</topic><topic>Dual polarization</topic><topic>European Space Agency</topic><topic>forest disturbance detection</topic><topic>Forest management</topic><topic>Forests</topic><topic>Rainforests</topic><topic>SAR (radar)</topic><topic>Satellite constellations</topic><topic>Scattering</topic><topic>scattering power decomposition</topic><topic>Sentinel-1</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Synthetic aperture radar</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>tropical forests</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugimoto, Ryu</creatorcontrib><creatorcontrib>Natsuaki, Ryo</creatorcontrib><creatorcontrib>Nakamura, Ryosuke</creatorcontrib><creatorcontrib>Tsutsumi, Chiaki</creatorcontrib><creatorcontrib>Yamaguchi, Yoshio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugimoto, Ryu</au><au>Natsuaki, Ryo</au><au>Nakamura, Ryosuke</au><au>Tsutsumi, Chiaki</au><au>Yamaguchi, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3346378</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8594-9263</orcidid><orcidid>https://orcid.org/0000-0003-2291-4375</orcidid><orcidid>https://orcid.org/0000-0003-4144-8760</orcidid><orcidid>https://orcid.org/0000-0002-0838-2977</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LGRS_2023_3346378 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Decomposition Deforestation Detection Dual polarization European Space Agency forest disturbance detection Forest management Forests Rainforests SAR (radar) Satellite constellations Scattering scattering power decomposition Sentinel-1 Spatial discrimination Spatial resolution Synthetic aperture radar Time series Time series analysis tropical forests Vegetation mapping |
title | Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Scattering%20Power%20Decomposition%20Using%20Ensemble%20Average%20in%20Temporal-Spatial%20Domains:%20Application%20to%20Forest%20Disturbance%20Detection&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Sugimoto,%20Ryu&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3346378&rft_dat=%3Cproquest_cross%3E2911488510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911488510&rft_id=info:pmid/&rft_ieee_id=10371285&rfr_iscdi=true |