Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection

This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Sugimoto, Ryu, Natsuaki, Ryo, Nakamura, Ryosuke, Tsutsumi, Chiaki, Yamaguchi, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2023.3346378