Time Series Scattering Power Decomposition Using Ensemble Average in Temporal-Spatial Domains: Application to Forest Disturbance Detection
This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but a...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter proposes a novel synthetic aperture radar (SAR) time series analysis method based on the scattering power decomposition algorithm with a reasonable ensemble average in both temporal and spatial domains. We reveal that the ensemble average is effective not only in the spatial domain but also in the temporal-spatial domains in the scattering power decomposition. That is, if we extend the ensemble average window in the temporal domain, the proposed method can accurately achieve volume scattering power with a higher spatial resolution than conventional approaches. The precise volume scattering power serves accurate forest monitoring. As an application, we performed forest disturbance detection in the Amazon rainforest using Sentinel-1 time series data. The proposed method detected the disturbances earlier, in less than 2 months, compared to other methods that take about 3 months. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2023.3346378 |