MLP-Based Efficient Stitching Method for UAV Images
Unmanned aerial vehicle (UAV) image stitching techniques based on position and attitude information have shown clear speed superiority over feature-based counterparts. However, how to improve stitching accuracy and robustness remains a great challenge since position and attitude parameters are sensi...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unmanned aerial vehicle (UAV) image stitching techniques based on position and attitude information have shown clear speed superiority over feature-based counterparts. However, how to improve stitching accuracy and robustness remains a great challenge since position and attitude parameters are sensitive to noise introduced by sensors and external environment. To mitigate this issue, this work presents a simple yet effective stitching algorithm for UAV images based on a coarse-to-fine strategy. Specifically, we first conduct coarse registration using the position and attitude information obtained from GPS, IMU, and altimeter. Then, we introduce a novel offline calibration phase that is designed to regress the obtained global transformation matrix to the optimal one computed from feature-based algorithms, by using multi-layer perceptron (MLP) neural networks for fast correction. Consequently, the proposed method well integrates the complementary strengths of both parameter and feature-based methods, achieving an ideal speed-accuracy tradeoff. Moreover, to facilitate research on this topic, we establish a new dataset, named UAV-AIRPAI, that comprises over 100 UAV image pairs with position and attitude annotations to the community, opening up a promising direction for UAV image stitching. Extensive experiments on the UAV-AIRPAI dataset show that our method achieves superior accuracy compared to priors while running at a real-time speed of 0.0124 s per image pair. Code and data will be available at https://github.com/dededust/UAV-AIRPAI . |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2022.3141890 |