Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction

Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2012-07, Vol.9 (4), p.705-709
Hauptverfasser: Yin, Jihao, Gao, Chao, Jia, Xiuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 709
container_issue 4
container_start_page 705
container_title IEEE geoscience and remote sensing letters
container_volume 9
creator Yin, Jihao
Gao, Chao
Jia, Xiuping
description Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov exponents to reveal local and general spectral profiles, respectively. A hyperspectral reflectance curve from each pixel is regarded as a time series, and it is represented by Hurst and Lyapunov exponents. These two new features are then used to overcome the Hughes problem for reliable classification. Experimental results show that the proposed method performs better than a few other feature extraction methods tested.
doi_str_mv 10.1109/LGRS.2011.2179005
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LGRS_2011_2179005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6138289</ieee_id><sourcerecordid>1031300172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f46bae81ca3fcf63f9022615ccfb13b1a9f401ef8df16d86cc3ef405314370753</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSurObTTZHKf2CgKAWvIXtdrakpNm4m4j9925o8eBphpfnHYYniu6BTgBo_lws3t4njAJMGGQ5peIiGoEQMqYig8thT0Qscvl5Hd14v6eUJVJmo6hY-6rZkWXvfEdUsyXFUbV9Y7_J7Ke1DTYdmVtHlscWnW9Rd07VZHVQOyRzVF3vMIAh1F1lm9voyqja4915jqP1fPYxXcbF62I1fSlizVnaxSZJNwolaMWNNik3OWUsBaG12QDfgMpNQgGN3BpItzLVmmNIBIeEZzQTfBw9ne62zn716LvyUHmNda0atL0vgXLglELGAvr4D93b3jXhu0ABE1yIVAYKTpR21nuHpmxddVDuGKBy8FsOfsvBb3n2GzoPp06FiH98ClwymfNf8EV2Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1012535568</pqid></control><display><type>article</type><title>Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Jihao ; Gao, Chao ; Jia, Xiuping</creator><creatorcontrib>Yin, Jihao ; Gao, Chao ; Jia, Xiuping</creatorcontrib><description>Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov exponents to reveal local and general spectral profiles, respectively. A hyperspectral reflectance curve from each pixel is regarded as a time series, and it is represented by Hurst and Lyapunov exponents. These two new features are then used to overcome the Hughes problem for reliable classification. Experimental results show that the proposed method performs better than a few other feature extraction methods tested.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2011.2179005</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Classification ; Feature extraction ; Hurst exponent ; hyperspectral image ; Hyperspectral imaging ; Lyapunov exponent ; Lyapunov exponents ; Principal component analysis ; Reflectance curves ; Remote sensing ; Spectra ; Time series ; Time series analysis</subject><ispartof>IEEE geoscience and remote sensing letters, 2012-07, Vol.9 (4), p.705-709</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f46bae81ca3fcf63f9022615ccfb13b1a9f401ef8df16d86cc3ef405314370753</citedby><cites>FETCH-LOGICAL-c326t-f46bae81ca3fcf63f9022615ccfb13b1a9f401ef8df16d86cc3ef405314370753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6138289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6138289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Jihao</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Jia, Xiuping</creatorcontrib><title>Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov exponents to reveal local and general spectral profiles, respectively. A hyperspectral reflectance curve from each pixel is regarded as a time series, and it is represented by Hurst and Lyapunov exponents. These two new features are then used to overcome the Hughes problem for reliable classification. Experimental results show that the proposed method performs better than a few other feature extraction methods tested.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Feature extraction</subject><subject>Hurst exponent</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Lyapunov exponent</subject><subject>Lyapunov exponents</subject><subject>Principal component analysis</subject><subject>Reflectance curves</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSurObTTZHKf2CgKAWvIXtdrakpNm4m4j9925o8eBphpfnHYYniu6BTgBo_lws3t4njAJMGGQ5peIiGoEQMqYig8thT0Qscvl5Hd14v6eUJVJmo6hY-6rZkWXvfEdUsyXFUbV9Y7_J7Ke1DTYdmVtHlscWnW9Rd07VZHVQOyRzVF3vMIAh1F1lm9voyqja4915jqP1fPYxXcbF62I1fSlizVnaxSZJNwolaMWNNik3OWUsBaG12QDfgMpNQgGN3BpItzLVmmNIBIeEZzQTfBw9ne62zn716LvyUHmNda0atL0vgXLglELGAvr4D93b3jXhu0ABE1yIVAYKTpR21nuHpmxddVDuGKBy8FsOfsvBb3n2GzoPp06FiH98ClwymfNf8EV2Lg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Yin, Jihao</creator><creator>Gao, Chao</creator><creator>Jia, Xiuping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20120701</creationdate><title>Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction</title><author>Yin, Jihao ; Gao, Chao ; Jia, Xiuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f46bae81ca3fcf63f9022615ccfb13b1a9f401ef8df16d86cc3ef405314370753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Feature extraction</topic><topic>Hurst exponent</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Lyapunov exponent</topic><topic>Lyapunov exponents</topic><topic>Principal component analysis</topic><topic>Reflectance curves</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Jihao</creatorcontrib><creatorcontrib>Gao, Chao</creatorcontrib><creatorcontrib>Jia, Xiuping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Jihao</au><au>Gao, Chao</au><au>Jia, Xiuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2012-07-01</date><risdate>2012</risdate><volume>9</volume><issue>4</issue><spage>705</spage><epage>709</epage><pages>705-709</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov exponents to reveal local and general spectral profiles, respectively. A hyperspectral reflectance curve from each pixel is regarded as a time series, and it is represented by Hurst and Lyapunov exponents. These two new features are then used to overcome the Hughes problem for reliable classification. Experimental results show that the proposed method performs better than a few other feature extraction methods tested.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2011.2179005</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2012-07, Vol.9 (4), p.705-709
issn 1545-598X
1558-0571
language eng
recordid cdi_crossref_primary_10_1109_LGRS_2011_2179005
source IEEE Electronic Library (IEL)
subjects Accuracy
Classification
Feature extraction
Hurst exponent
hyperspectral image
Hyperspectral imaging
Lyapunov exponent
Lyapunov exponents
Principal component analysis
Reflectance curves
Remote sensing
Spectra
Time series
Time series analysis
title Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Hurst%20and%20Lyapunov%20Exponent%20For%20Hyperspectral%20Image%20Feature%20Extraction&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Yin,%20Jihao&rft.date=2012-07-01&rft.volume=9&rft.issue=4&rft.spage=705&rft.epage=709&rft.pages=705-709&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2011.2179005&rft_dat=%3Cproquest_RIE%3E1031300172%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1012535568&rft_id=info:pmid/&rft_ieee_id=6138289&rfr_iscdi=true