Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction

Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2012-07, Vol.9 (4), p.705-709
Hauptverfasser: Yin, Jihao, Gao, Chao, Jia, Xiuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov exponents to reveal local and general spectral profiles, respectively. A hyperspectral reflectance curve from each pixel is regarded as a time series, and it is represented by Hurst and Lyapunov exponents. These two new features are then used to overcome the Hughes problem for reliable classification. Experimental results show that the proposed method performs better than a few other feature extraction methods tested.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2011.2179005