Urban-Area Segmentation Using Visual Words

In this letter, we address the problem of urban-area extraction by using a feature-free image representation concept known as ldquoVisual Words.rdquo This method is based on building a ldquodictionaryrdquo of small patches, some of which appear mainly in urban areas. The proposed algorithm is based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2009-07, Vol.6 (3), p.388-392
Hauptverfasser: Weizman, L., Goldberger, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we address the problem of urban-area extraction by using a feature-free image representation concept known as ldquoVisual Words.rdquo This method is based on building a ldquodictionaryrdquo of small patches, some of which appear mainly in urban areas. The proposed algorithm is based on a new pixel-level variant of visual words and is based on three parts: building a visual dictionary, learning urban words from labeled images, and detecting urban regions in a new image. Using normalized patches makes the method more robust to changes in illumination during acquisition time. The improved performance of the method is demonstrated on real satellite images from three different sensors: LANDSAT, SPOT, and IKONOS. To assess the robustness of our method, the learning and testing procedures were carried out on different and independent images.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2009.2014400