TCAD Device Simulation with Graph Neural Network

There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2023-08, Vol.44 (8), p.1-1
Hauptverfasser: Jang, Wonik, Myung, Sanghoon, Choe, Jae Myung, Kim, Young-Gu, Kim, Dae Sin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE electron device letters
container_volume 44
creator Jang, Wonik
Myung, Sanghoon
Choe, Jae Myung
Kim, Young-Gu
Kim, Dae Sin
description There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.
doi_str_mv 10.1109/LED.2023.3290930
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2023_3290930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168926</ieee_id><sourcerecordid>2844893392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-b7b1b22a3d048f7dc29519c198188746eeea312c4f6c8747bf11a5b2485c124b3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EEqWwMzBEYk65O9uJPVZtKUgRDJTZclxHTWmb4iRU_HtctQPTp5Ped3d6jN0jjBBBPxWz6YiA-IiTBs3hgg1QSpWCzPglG0AuMOUI2TW7ads1AAqRiwGDxWQ8Tab-p3Y--ai3_cZ2dbNLDnW3SubB7lfJm--D3cToDk34umVXld20_u6cQ_b5PFtMXtLiff46GRepIyG7tMxLLIksX4JQVb50pCVqh1qhUrnIvPeWIzlRZS7OeVkhWlmSUNIhiZIP2eNp7z40371vO7Nu-rCLJw0pIZTmXFOk4ES50LRt8JXZh3prw69BMEcvJnoxRy_m7CVWHk6VOv7wD8dMacr4H5x7W8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844893392</pqid></control><display><type>article</type><title>TCAD Device Simulation with Graph Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Jang, Wonik ; Myung, Sanghoon ; Choe, Jae Myung ; Kim, Young-Gu ; Kim, Dae Sin</creator><creatorcontrib>Jang, Wonik ; Myung, Sanghoon ; Choe, Jae Myung ; Kim, Young-Gu ; Kim, Dae Sin</creatorcontrib><description>There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2023.3290930</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Affine Transformation ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Graph Neural Network (GNN) ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Mesh ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Multi-hops ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;TCAD simulation ; Computational modeling ; Finite element method ; Graph neural networks ; Interpolation ; Logic gates ; Machine learning ; Predictive models ; Simulation ; Spread spectrum communication ; Transforms</subject><ispartof>IEEE electron device letters, 2023-08, Vol.44 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-b7b1b22a3d048f7dc29519c198188746eeea312c4f6c8747bf11a5b2485c124b3</cites><orcidid>0000-0003-3010-521X ; 0000-0002-4478-4578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10168926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jang, Wonik</creatorcontrib><creatorcontrib>Myung, Sanghoon</creatorcontrib><creatorcontrib>Choe, Jae Myung</creatorcontrib><creatorcontrib>Kim, Young-Gu</creatorcontrib><creatorcontrib>Kim, Dae Sin</creatorcontrib><title>TCAD Device Simulation with Graph Neural Network</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Affine Transformation</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Graph Neural Network (GNN)</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Mesh</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Multi-hops</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;TCAD simulation</subject><subject>Computational modeling</subject><subject>Finite element method</subject><subject>Graph neural networks</subject><subject>Interpolation</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Predictive models</subject><subject>Simulation</subject><subject>Spread spectrum communication</subject><subject>Transforms</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EEqWwMzBEYk65O9uJPVZtKUgRDJTZclxHTWmb4iRU_HtctQPTp5Ped3d6jN0jjBBBPxWz6YiA-IiTBs3hgg1QSpWCzPglG0AuMOUI2TW7ads1AAqRiwGDxWQ8Tab-p3Y--ai3_cZ2dbNLDnW3SubB7lfJm--D3cToDk34umVXld20_u6cQ_b5PFtMXtLiff46GRepIyG7tMxLLIksX4JQVb50pCVqh1qhUrnIvPeWIzlRZS7OeVkhWlmSUNIhiZIP2eNp7z40371vO7Nu-rCLJw0pIZTmXFOk4ES50LRt8JXZh3prw69BMEcvJnoxRy_m7CVWHk6VOv7wD8dMacr4H5x7W8s</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jang, Wonik</creator><creator>Myung, Sanghoon</creator><creator>Choe, Jae Myung</creator><creator>Kim, Young-Gu</creator><creator>Kim, Dae Sin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3010-521X</orcidid><orcidid>https://orcid.org/0000-0002-4478-4578</orcidid></search><sort><creationdate>20230801</creationdate><title>TCAD Device Simulation with Graph Neural Network</title><author>Jang, Wonik ; Myung, Sanghoon ; Choe, Jae Myung ; Kim, Young-Gu ; Kim, Dae Sin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-b7b1b22a3d048f7dc29519c198188746eeea312c4f6c8747bf11a5b2485c124b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Affine Transformation</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Graph Neural Network (GNN)</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Mesh</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;Multi-hops</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;TCAD simulation</topic><topic>Computational modeling</topic><topic>Finite element method</topic><topic>Graph neural networks</topic><topic>Interpolation</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Predictive models</topic><topic>Simulation</topic><topic>Spread spectrum communication</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Wonik</creatorcontrib><creatorcontrib>Myung, Sanghoon</creatorcontrib><creatorcontrib>Choe, Jae Myung</creatorcontrib><creatorcontrib>Kim, Young-Gu</creatorcontrib><creatorcontrib>Kim, Dae Sin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jang, Wonik</au><au>Myung, Sanghoon</au><au>Choe, Jae Myung</au><au>Kim, Young-Gu</au><au>Kim, Dae Sin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TCAD Device Simulation with Graph Neural Network</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2023.3290930</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3010-521X</orcidid><orcidid>https://orcid.org/0000-0002-4478-4578</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2023-08, Vol.44 (8), p.1-1
issn 0741-3106
1558-0563
language eng
recordid cdi_crossref_primary_10_1109_LED_2023_3290930
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Affine Transformation
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Graph Neural Network (GNN)
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Mesh
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Multi-hops
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TCAD simulation
Computational modeling
Finite element method
Graph neural networks
Interpolation
Logic gates
Machine learning
Predictive models
Simulation
Spread spectrum communication
Transforms
title TCAD Device Simulation with Graph Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TCAD%20Device%20Simulation%20with%20Graph%20Neural%20Network&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Jang,%20Wonik&rft.date=2023-08-01&rft.volume=44&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2023.3290930&rft_dat=%3Cproquest_RIE%3E2844893392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844893392&rft_id=info:pmid/&rft_ieee_id=10168926&rfr_iscdi=true