TCAD Device Simulation with Graph Neural Network
There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this u...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2023-08, Vol.44 (8), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE electron device letters |
container_volume | 44 |
creator | Jang, Wonik Myung, Sanghoon Choe, Jae Myung Kim, Young-Gu Kim, Dae Sin |
description | There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency. |
doi_str_mv | 10.1109/LED.2023.3290930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LED_2023_3290930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168926</ieee_id><sourcerecordid>2844893392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-b7b1b22a3d048f7dc29519c198188746eeea312c4f6c8747bf11a5b2485c124b3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EEqWwMzBEYk65O9uJPVZtKUgRDJTZclxHTWmb4iRU_HtctQPTp5Ped3d6jN0jjBBBPxWz6YiA-IiTBs3hgg1QSpWCzPglG0AuMOUI2TW7ads1AAqRiwGDxWQ8Tab-p3Y--ai3_cZ2dbNLDnW3SubB7lfJm--D3cToDk34umVXld20_u6cQ_b5PFtMXtLiff46GRepIyG7tMxLLIksX4JQVb50pCVqh1qhUrnIvPeWIzlRZS7OeVkhWlmSUNIhiZIP2eNp7z40371vO7Nu-rCLJw0pIZTmXFOk4ES50LRt8JXZh3prw69BMEcvJnoxRy_m7CVWHk6VOv7wD8dMacr4H5x7W8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844893392</pqid></control><display><type>article</type><title>TCAD Device Simulation with Graph Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Jang, Wonik ; Myung, Sanghoon ; Choe, Jae Myung ; Kim, Young-Gu ; Kim, Dae Sin</creator><creatorcontrib>Jang, Wonik ; Myung, Sanghoon ; Choe, Jae Myung ; Kim, Young-Gu ; Kim, Dae Sin</creatorcontrib><description>There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2023.3290930</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Affine Transformation ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Graph Neural Network (GNN) ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Mesh ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Multi-hops ; <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TCAD simulation ; Computational modeling ; Finite element method ; Graph neural networks ; Interpolation ; Logic gates ; Machine learning ; Predictive models ; Simulation ; Spread spectrum communication ; Transforms</subject><ispartof>IEEE electron device letters, 2023-08, Vol.44 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-b7b1b22a3d048f7dc29519c198188746eeea312c4f6c8747bf11a5b2485c124b3</cites><orcidid>0000-0003-3010-521X ; 0000-0002-4478-4578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10168926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jang, Wonik</creatorcontrib><creatorcontrib>Myung, Sanghoon</creatorcontrib><creatorcontrib>Choe, Jae Myung</creatorcontrib><creatorcontrib>Kim, Young-Gu</creatorcontrib><creatorcontrib>Kim, Dae Sin</creatorcontrib><title>TCAD Device Simulation with Graph Neural Network</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Affine Transformation</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Graph Neural Network (GNN)</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Mesh</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Multi-hops</subject><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TCAD simulation</subject><subject>Computational modeling</subject><subject>Finite element method</subject><subject>Graph neural networks</subject><subject>Interpolation</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Predictive models</subject><subject>Simulation</subject><subject>Spread spectrum communication</subject><subject>Transforms</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EEqWwMzBEYk65O9uJPVZtKUgRDJTZclxHTWmb4iRU_HtctQPTp5Ped3d6jN0jjBBBPxWz6YiA-IiTBs3hgg1QSpWCzPglG0AuMOUI2TW7ads1AAqRiwGDxWQ8Tab-p3Y--ai3_cZ2dbNLDnW3SubB7lfJm--D3cToDk34umVXld20_u6cQ_b5PFtMXtLiff46GRepIyG7tMxLLIksX4JQVb50pCVqh1qhUrnIvPeWIzlRZS7OeVkhWlmSUNIhiZIP2eNp7z40371vO7Nu-rCLJw0pIZTmXFOk4ES50LRt8JXZh3prw69BMEcvJnoxRy_m7CVWHk6VOv7wD8dMacr4H5x7W8s</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jang, Wonik</creator><creator>Myung, Sanghoon</creator><creator>Choe, Jae Myung</creator><creator>Kim, Young-Gu</creator><creator>Kim, Dae Sin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3010-521X</orcidid><orcidid>https://orcid.org/0000-0002-4478-4578</orcidid></search><sort><creationdate>20230801</creationdate><title>TCAD Device Simulation with Graph Neural Network</title><author>Jang, Wonik ; Myung, Sanghoon ; Choe, Jae Myung ; Kim, Young-Gu ; Kim, Dae Sin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-b7b1b22a3d048f7dc29519c198188746eeea312c4f6c8747bf11a5b2485c124b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Affine Transformation</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Graph Neural Network (GNN)</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Mesh</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Multi-hops</topic><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TCAD simulation</topic><topic>Computational modeling</topic><topic>Finite element method</topic><topic>Graph neural networks</topic><topic>Interpolation</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Predictive models</topic><topic>Simulation</topic><topic>Spread spectrum communication</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Wonik</creatorcontrib><creatorcontrib>Myung, Sanghoon</creatorcontrib><creatorcontrib>Choe, Jae Myung</creatorcontrib><creatorcontrib>Kim, Young-Gu</creatorcontrib><creatorcontrib>Kim, Dae Sin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jang, Wonik</au><au>Myung, Sanghoon</au><au>Choe, Jae Myung</au><au>Kim, Young-Gu</au><au>Kim, Dae Sin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TCAD Device Simulation with Graph Neural Network</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>44</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2023.3290930</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3010-521X</orcidid><orcidid>https://orcid.org/0000-0002-4478-4578</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2023-08, Vol.44 (8), p.1-1 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LED_2023_3290930 |
source | IEEE Electronic Library (IEL) |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Affine Transformation <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Graph Neural Network (GNN) <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Mesh <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Multi-hops <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TCAD simulation Computational modeling Finite element method Graph neural networks Interpolation Logic gates Machine learning Predictive models Simulation Spread spectrum communication Transforms |
title | TCAD Device Simulation with Graph Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TCAD%20Device%20Simulation%20with%20Graph%20Neural%20Network&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Jang,%20Wonik&rft.date=2023-08-01&rft.volume=44&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2023.3290930&rft_dat=%3Cproquest_RIE%3E2844893392%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844893392&rft_id=info:pmid/&rft_ieee_id=10168926&rfr_iscdi=true |