TCAD Device Simulation with Graph Neural Network

There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2023-08, Vol.44 (8), p.1-1
Hauptverfasser: Jang, Wonik, Myung, Sanghoon, Choe, Jae Myung, Kim, Young-Gu, Kim, Dae Sin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is an increasing number of studies to accelerate the TCAD simulation with deep learning models. Such studies rely on performing a procedure that interpolates an unstructured mesh into a structured mesh. This procedure, however, incurs intrinsic errors and redundant computation. To avoid this unnecessary procedure, this letter proposes a new method that can treat unstructured mesh itself to mimic TCAD device simulation. The method is to convert the unstructured mesh into a graph and then, directly applies a novel graph neural network (MHAT-GNN). In 45nm process, the proposed method outperforms pre-existing methods in terms of accuracy and efficiency.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2023.3290930