Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm

This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm's iterates under the assumption of diminishing bias. Furthermore, we derive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024, Vol.8, p.2397-2402
Hauptverfasser: Paul, Anik Kumar, Mahindrakar, Arun D., Kalaimani, Rachel K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter investigates the convergence and concentration properties of the Stochastic Mirror Descent (SMD) algorithm utilizing biased stochastic subgradients. We establish the almost sure convergence of the algorithm's iterates under the assumption of diminishing bias. Furthermore, we derive concentration bounds for the discrepancy between the iterates' function values and the optimal value, based on standard assumptions. Subsequently, leveraging the assumption of Sub-Gaussian noise in stochastic subgradients, we present refined concentration bounds for this discrepancy.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2024.3482148