Bounding Stochastic Safety: Leveraging Freedman's Inequality With Discrete-Time Control Barrier Functions
When deployed in the real world, safe control methods must be robust to unstructured uncertainties such as modeling error and external disturbances. Typical robust safety methods achieve their guarantees by always assuming that the worst-case disturbance will occur. In contrast, this letter utilizes...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2024, Vol.8, p.1937-1942 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When deployed in the real world, safe control methods must be robust to unstructured uncertainties such as modeling error and external disturbances. Typical robust safety methods achieve their guarantees by always assuming that the worst-case disturbance will occur. In contrast, this letter utilizes Freedman's inequality in the context of discrete-time control barrier functions (DTCBFs) and c-martingales to provide stronger (less conservative) safety guarantees for stochastic systems. Our approach accounts for the underlying disturbance distribution instead of relying exclusively on its worst-case bound and does not require the barrier function to be upper-bounded, which makes the resulting safety probability bounds more useful for intuitive safety constraints such as signed distance. We compare our results with existing safety guarantees, such as input-to-state safety (ISSf) and martingale results that rely on Ville's inequality. When the assumptions for all methods hold, we provide a range of parameters for which our guarantee is stronger. Finally, we present simulation examples, including a bipedal walking robot, that demonstrate the utility and tightness of our safety guarantee. |
---|---|
ISSN: | 2475-1456 2475-1456 |
DOI: | 10.1109/LCSYS.2024.3409105 |