Tikhonov Regularized Exterior Penalty Dynamics for Constrained Variational Inequalities

Solving equilibrium problems under constraints is an important problem in optimization and optimal control. In this context an important practical challenge is the efficient incorporation of constraints. We develop a continuous-time method for solving constrained variational inequalities based on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024, Vol.8, p.622-627
Hauptverfasser: Staudigl, Mathias, Qu, Siqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solving equilibrium problems under constraints is an important problem in optimization and optimal control. In this context an important practical challenge is the efficient incorporation of constraints. We develop a continuous-time method for solving constrained variational inequalities based on a new penalty regulated dynamical system in a general potentially infinite-dimensional Hilbert space. In order to obtain strong convergence of the issued trajectory of our method, we incorporate an explicit Tikhonov regularization parameter in our method, leading to a class of time-varying monotone inclusion problems featuring multiscale aspects. Besides strong convergence, we illustrate the practical efficiency of our developed method in solving constrained min-max problems.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2024.3401019