Nonconvex Distributed Optimization via Lasalle and Singular Perturbations
In this letter we address nonconvex distributed consensus optimization, a popular framework for distributed big-data analytics and learning. We consider the Gradient Tracking algorithm and, by resorting to an elegant system theoretical analysis, we show that agent estimates asymptotically reach cons...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2023, Vol.7, p.301-306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter we address nonconvex distributed consensus optimization, a popular framework for distributed big-data analytics and learning. We consider the Gradient Tracking algorithm and, by resorting to an elegant system theoretical analysis, we show that agent estimates asymptotically reach consensus to a stationary point. We take advantage of suitable coordinates to write the Gradient Tracking as the interconnection of a fast dynamics and a slow one. To use a singular perturbation analysis, we separately study two auxiliary subsystems called boundary layer and reduced systems, respectively. We provide a Lyapunov function for the boundary layer system and use Lasalle-based arguments to show that trajectories of the reduced system converge to the set of stationary points. Finally, a customized version of a Lasalle's Invariance Principle for singularly perturbed systems is proved to show the convergence properties of the Gradient Tracking. |
---|---|
ISSN: | 2475-1456 2475-1456 |
DOI: | 10.1109/LCSYS.2022.3187918 |