Safe Bayesian Optimization Using Interior-Point Methods-Applied to Personalized Insulin Dose Guidance

This letter considers the problem of Bayesian optimization for systems with safety-critical constraints, where both the objective function and the constraints are unknown, but can be observed by querying the system. In safety-critical applications, querying the system at an infeasible point can have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2022, Vol.6, p.2834-2839
Hauptverfasser: Krishnamoorthy, Dinesh, Doyle, Francis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter considers the problem of Bayesian optimization for systems with safety-critical constraints, where both the objective function and the constraints are unknown, but can be observed by querying the system. In safety-critical applications, querying the system at an infeasible point can have catastrophic consequences. Such systems require a safe learning framework, such that the performance objective can be optimized while satisfying the safety-critical constraints with high probability. In this letter we propose a safe Bayesian optimization framework that ensures that the points queried are always in the interior of the partially revealed safe region, thereby guaranteeing constraint satisfaction with high probability. The proposed interior-point Bayesian optimization framework can be used with any acquisition function, making it broadly applicable. The performance of the proposed method is demonstrated using a personalized insulin dosing application for patients with type 1 diabetes.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2022.3179330