A Distributed Algorithm That Finds Almost Best Possible Estimate Under Non-Vanishing and Time-Varying Measurement Noise
In this letter, we review an existing distributed least-squares solver and share some new insights on it. Then, by the observation that an estimation of a constant vector under output noise can be translated into finding the least-squares solution, we present an algorithm for distributed estimation...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2020-01, Vol.4 (1), p.229-234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we review an existing distributed least-squares solver and share some new insights on it. Then, by the observation that an estimation of a constant vector under output noise can be translated into finding the least-squares solution, we present an algorithm for distributed estimation of the state of linear time-invariant systems under measurement noise. The proposed algorithm consists of a network of local observers, where each of them utilizes local measurements and information transmitted from the neighbors. It is proven that even under non-vanishing and time-varying measurement noise, we could obtain an almost best possible estimate with arbitrary precision. Some discussions regarding the plug-and-play operation are also given. |
---|---|
ISSN: | 2475-1456 2475-1456 |
DOI: | 10.1109/LCSYS.2019.2923475 |