Systematic Design of Decentralized Algorithms for Consensus Optimization

We propose a separation principle that enables a systematic way of designing decentralized algorithms used in consensus optimization. Specifically, we show that a decentralized optimization algorithm can be constructed by combining a non-decentralized base optimization algorithm and decentralized co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2019-10, Vol.3 (4), p.966-971
1. Verfasser: Han, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a separation principle that enables a systematic way of designing decentralized algorithms used in consensus optimization. Specifically, we show that a decentralized optimization algorithm can be constructed by combining a non-decentralized base optimization algorithm and decentralized consensus tracking. The separation principle provides modularity in both the design and analysis of algorithms under an automated convergence analysis framework using integral quadratic constraints (IQCs). We show that consensus tracking can be incorporated into the IQC-based analysis. The workflow is illustrated through the design and analysis of a decentralized algorithm based on the alternating direction method of multipliers.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2019.2920342