SVM-Based Factor Graph Design for Max-SR Problem of SCMA Networks

In this letter, a novel factor graph design based on the support vector machine (SVM) is proposed to maximize the sum-rate (Max-SR) of three-dimensional (3D) SCMA networks. A new iterative inter-group subcarrier allocation (IIGSCA) algorithm is proposed to train datasets. Hence, it effectively impro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-04, Vol.28 (4), p.877-881
Hauptverfasser: Cheraghy, Maryam, Soltanpour, Meysam, Abdalla, Hemn Barzan, Oveis, Amir Hosein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, a novel factor graph design based on the support vector machine (SVM) is proposed to maximize the sum-rate (Max-SR) of three-dimensional (3D) SCMA networks. A new iterative inter-group subcarrier allocation (IIGSCA) algorithm is proposed to train datasets. Hence, it effectively improves the multiclass classification accuracy of the proposed SVM-based scheme to predict the optimal factor graph matrix (FGM). The simulation results confirm that the IIGSCA-assisted SVM algorithm can approach the optimal FGM obtained by exhaustive search (ES).
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2024.3366426