SVM-Based Factor Graph Design for Max-SR Problem of SCMA Networks
In this letter, a novel factor graph design based on the support vector machine (SVM) is proposed to maximize the sum-rate (Max-SR) of three-dimensional (3D) SCMA networks. A new iterative inter-group subcarrier allocation (IIGSCA) algorithm is proposed to train datasets. Hence, it effectively impro...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2024-04, Vol.28 (4), p.877-881 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, a novel factor graph design based on the support vector machine (SVM) is proposed to maximize the sum-rate (Max-SR) of three-dimensional (3D) SCMA networks. A new iterative inter-group subcarrier allocation (IIGSCA) algorithm is proposed to train datasets. Hence, it effectively improves the multiclass classification accuracy of the proposed SVM-based scheme to predict the optimal factor graph matrix (FGM). The simulation results confirm that the IIGSCA-assisted SVM algorithm can approach the optimal FGM obtained by exhaustive search (ES). |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2024.3366426 |