Online Trajectory Optimization for UAV-Assisted Hybrid FSO/RF Network With QoS-Guarantee

This letter investigates a hybrid FSO/RF wireless network supported by the unnamed aerial vehicle (UAV), providing coverage for mobile vehicles. Albeit mobility and signal-propagation impede quality-of-service (QoS), existing research, however, ignores the impact of practical mobility that reshapes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2023-05, Vol.27 (5), p.1357-1361
Hauptverfasser: Liu, Yong-Ce, Wu, Zi-Yang, Song, Peng-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter investigates a hybrid FSO/RF wireless network supported by the unnamed aerial vehicle (UAV), providing coverage for mobile vehicles. Albeit mobility and signal-propagation impede quality-of-service (QoS), existing research, however, ignores the impact of practical mobility that reshapes the behaviour pattern UAVs would learn to conduct. This letter proposes a deep reinforcement learning (DRL) algorithm with proximal policy optimization (PPO) to guarantee the UAV-supported QoS through trajectory optimization online. Under various setups of speed limitation of vehicles and QoS requirements, our numerical results demonstrate the effectiveness and robustness of the herein proposed algorithm.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2023.3252725