Online Trajectory Optimization for UAV-Assisted Hybrid FSO/RF Network With QoS-Guarantee
This letter investigates a hybrid FSO/RF wireless network supported by the unnamed aerial vehicle (UAV), providing coverage for mobile vehicles. Albeit mobility and signal-propagation impede quality-of-service (QoS), existing research, however, ignores the impact of practical mobility that reshapes...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2023-05, Vol.27 (5), p.1357-1361 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter investigates a hybrid FSO/RF wireless network supported by the unnamed aerial vehicle (UAV), providing coverage for mobile vehicles. Albeit mobility and signal-propagation impede quality-of-service (QoS), existing research, however, ignores the impact of practical mobility that reshapes the behaviour pattern UAVs would learn to conduct. This letter proposes a deep reinforcement learning (DRL) algorithm with proximal policy optimization (PPO) to guarantee the UAV-supported QoS through trajectory optimization online. Under various setups of speed limitation of vehicles and QoS requirements, our numerical results demonstrate the effectiveness and robustness of the herein proposed algorithm. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2023.3252725 |