On the Error Analysis of Hexagonal-QAM Constellations

Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2022-08, Vol.26 (8), p.1764-1768
Hauptverfasser: Oikonomou, Thrassos K., Tegos, Sotiris A., Tyrovolas, Dimitrios, Diamantoulakis, Panagiotis D., Karagiannidis, George K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1768
container_issue 8
container_start_page 1764
container_title IEEE communications letters
container_volume 26
creator Oikonomou, Thrassos K.
Tegos, Sotiris A.
Tyrovolas, Dimitrios
Diamantoulakis, Panagiotis D.
Karagiannidis, George K.
description Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.
doi_str_mv 10.1109/LCOMM.2022.3179454
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2022_3179454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785975</ieee_id><sourcerecordid>2703438077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKtfQC8LnrdOJpsmOZalWqGlCHoOu_mjW9amJluw395oi5eZx_De8PgRckthQimoh2W9Xq0mCIgTRoWqeHVGRpRzWWIe51mDVKUQSl6Sq5Q2ACCR0xHh620xfLhiHmOIxWzb9IfUpSL4YuG-m_eQD-XLbFXUYZsG1_fN0GV1TS580yd3c9pj8vY4f60X5XL99FzPlqVB5EM5FdQotI2lrEWPKAzl1PDW2VaBtxVYLqeMtV7lxtZ7Y1CyKTPgrOHCWjYm98e_uxi-9i4NehP2MXdKGgWwikkQIrvw6DIxpBSd17vYfTbxoCnoXzz6D4_-xaNPeHLo7hjqnHP_ASUkV4KzHwVOYD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703438077</pqid></control><display><type>article</type><title>On the Error Analysis of Hexagonal-QAM Constellations</title><source>IEEE Electronic Library (IEL)</source><creator>Oikonomou, Thrassos K. ; Tegos, Sotiris A. ; Tyrovolas, Dimitrios ; Diamantoulakis, Panagiotis D. ; Karagiannidis, George K.</creator><creatorcontrib>Oikonomou, Thrassos K. ; Tegos, Sotiris A. ; Tyrovolas, Dimitrios ; Diamantoulakis, Panagiotis D. ; Karagiannidis, George K.</creatorcontrib><description>Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2022.3179454</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AWGN ; Communications systems ; Complexity theory ; detection scheme ; Error analysis ; Error probability ; Hexagonal lattice ; HQAM ; Mathematical analysis ; Modulation ; Power efficiency ; Quadrature amplitude modulation ; Signal to noise ratio ; symbol error probability ; Symbols ; Upper bound ; Upper bounds</subject><ispartof>IEEE communications letters, 2022-08, Vol.26 (8), p.1764-1768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</citedby><cites>FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</cites><orcidid>0000-0003-4345-6246 ; 0000-0001-7795-8311 ; 0000-0002-0782-5844 ; 0000-0001-8810-0345 ; 0000-0001-8967-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oikonomou, Thrassos K.</creatorcontrib><creatorcontrib>Tegos, Sotiris A.</creatorcontrib><creatorcontrib>Tyrovolas, Dimitrios</creatorcontrib><creatorcontrib>Diamantoulakis, Panagiotis D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><title>On the Error Analysis of Hexagonal-QAM Constellations</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.</description><subject>AWGN</subject><subject>Communications systems</subject><subject>Complexity theory</subject><subject>detection scheme</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>Hexagonal lattice</subject><subject>HQAM</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>Power efficiency</subject><subject>Quadrature amplitude modulation</subject><subject>Signal to noise ratio</subject><subject>symbol error probability</subject><subject>Symbols</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKtfQC8LnrdOJpsmOZalWqGlCHoOu_mjW9amJluw395oi5eZx_De8PgRckthQimoh2W9Xq0mCIgTRoWqeHVGRpRzWWIe51mDVKUQSl6Sq5Q2ACCR0xHh620xfLhiHmOIxWzb9IfUpSL4YuG-m_eQD-XLbFXUYZsG1_fN0GV1TS580yd3c9pj8vY4f60X5XL99FzPlqVB5EM5FdQotI2lrEWPKAzl1PDW2VaBtxVYLqeMtV7lxtZ7Y1CyKTPgrOHCWjYm98e_uxi-9i4NehP2MXdKGgWwikkQIrvw6DIxpBSd17vYfTbxoCnoXzz6D4_-xaNPeHLo7hjqnHP_ASUkV4KzHwVOYD0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Oikonomou, Thrassos K.</creator><creator>Tegos, Sotiris A.</creator><creator>Tyrovolas, Dimitrios</creator><creator>Diamantoulakis, Panagiotis D.</creator><creator>Karagiannidis, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4345-6246</orcidid><orcidid>https://orcid.org/0000-0001-7795-8311</orcidid><orcidid>https://orcid.org/0000-0002-0782-5844</orcidid><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0000-0001-8967-1203</orcidid></search><sort><creationdate>20220801</creationdate><title>On the Error Analysis of Hexagonal-QAM Constellations</title><author>Oikonomou, Thrassos K. ; Tegos, Sotiris A. ; Tyrovolas, Dimitrios ; Diamantoulakis, Panagiotis D. ; Karagiannidis, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AWGN</topic><topic>Communications systems</topic><topic>Complexity theory</topic><topic>detection scheme</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>Hexagonal lattice</topic><topic>HQAM</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>Power efficiency</topic><topic>Quadrature amplitude modulation</topic><topic>Signal to noise ratio</topic><topic>symbol error probability</topic><topic>Symbols</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oikonomou, Thrassos K.</creatorcontrib><creatorcontrib>Tegos, Sotiris A.</creatorcontrib><creatorcontrib>Tyrovolas, Dimitrios</creatorcontrib><creatorcontrib>Diamantoulakis, Panagiotis D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oikonomou, Thrassos K.</au><au>Tegos, Sotiris A.</au><au>Tyrovolas, Dimitrios</au><au>Diamantoulakis, Panagiotis D.</au><au>Karagiannidis, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Error Analysis of Hexagonal-QAM Constellations</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>1764</spage><epage>1768</epage><pages>1764-1768</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2022.3179454</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4345-6246</orcidid><orcidid>https://orcid.org/0000-0001-7795-8311</orcidid><orcidid>https://orcid.org/0000-0002-0782-5844</orcidid><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0000-0001-8967-1203</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2022-08, Vol.26 (8), p.1764-1768
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2022_3179454
source IEEE Electronic Library (IEL)
subjects AWGN
Communications systems
Complexity theory
detection scheme
Error analysis
Error probability
Hexagonal lattice
HQAM
Mathematical analysis
Modulation
Power efficiency
Quadrature amplitude modulation
Signal to noise ratio
symbol error probability
Symbols
Upper bound
Upper bounds
title On the Error Analysis of Hexagonal-QAM Constellations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Error%20Analysis%20of%20Hexagonal-QAM%20Constellations&rft.jtitle=IEEE%20communications%20letters&rft.au=Oikonomou,%20Thrassos%20K.&rft.date=2022-08-01&rft.volume=26&rft.issue=8&rft.spage=1764&rft.epage=1768&rft.pages=1764-1768&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2022.3179454&rft_dat=%3Cproquest_RIE%3E2703438077%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703438077&rft_id=info:pmid/&rft_ieee_id=9785975&rfr_iscdi=true