On the Error Analysis of Hexagonal-QAM Constellations
Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2022-08, Vol.26 (8), p.1764-1768 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1768 |
---|---|
container_issue | 8 |
container_start_page | 1764 |
container_title | IEEE communications letters |
container_volume | 26 |
creator | Oikonomou, Thrassos K. Tegos, Sotiris A. Tyrovolas, Dimitrios Diamantoulakis, Panagiotis D. Karagiannidis, George K. |
description | Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented. |
doi_str_mv | 10.1109/LCOMM.2022.3179454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2022_3179454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9785975</ieee_id><sourcerecordid>2703438077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKtfQC8LnrdOJpsmOZalWqGlCHoOu_mjW9amJluw395oi5eZx_De8PgRckthQimoh2W9Xq0mCIgTRoWqeHVGRpRzWWIe51mDVKUQSl6Sq5Q2ACCR0xHh620xfLhiHmOIxWzb9IfUpSL4YuG-m_eQD-XLbFXUYZsG1_fN0GV1TS580yd3c9pj8vY4f60X5XL99FzPlqVB5EM5FdQotI2lrEWPKAzl1PDW2VaBtxVYLqeMtV7lxtZ7Y1CyKTPgrOHCWjYm98e_uxi-9i4NehP2MXdKGgWwikkQIrvw6DIxpBSd17vYfTbxoCnoXzz6D4_-xaNPeHLo7hjqnHP_ASUkV4KzHwVOYD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703438077</pqid></control><display><type>article</type><title>On the Error Analysis of Hexagonal-QAM Constellations</title><source>IEEE Electronic Library (IEL)</source><creator>Oikonomou, Thrassos K. ; Tegos, Sotiris A. ; Tyrovolas, Dimitrios ; Diamantoulakis, Panagiotis D. ; Karagiannidis, George K.</creator><creatorcontrib>Oikonomou, Thrassos K. ; Tegos, Sotiris A. ; Tyrovolas, Dimitrios ; Diamantoulakis, Panagiotis D. ; Karagiannidis, George K.</creatorcontrib><description>Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2022.3179454</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AWGN ; Communications systems ; Complexity theory ; detection scheme ; Error analysis ; Error probability ; Hexagonal lattice ; HQAM ; Mathematical analysis ; Modulation ; Power efficiency ; Quadrature amplitude modulation ; Signal to noise ratio ; symbol error probability ; Symbols ; Upper bound ; Upper bounds</subject><ispartof>IEEE communications letters, 2022-08, Vol.26 (8), p.1764-1768</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</citedby><cites>FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</cites><orcidid>0000-0003-4345-6246 ; 0000-0001-7795-8311 ; 0000-0002-0782-5844 ; 0000-0001-8810-0345 ; 0000-0001-8967-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9785975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27913,27914,54747</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9785975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oikonomou, Thrassos K.</creatorcontrib><creatorcontrib>Tegos, Sotiris A.</creatorcontrib><creatorcontrib>Tyrovolas, Dimitrios</creatorcontrib><creatorcontrib>Diamantoulakis, Panagiotis D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><title>On the Error Analysis of Hexagonal-QAM Constellations</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.</description><subject>AWGN</subject><subject>Communications systems</subject><subject>Complexity theory</subject><subject>detection scheme</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>Hexagonal lattice</subject><subject>HQAM</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>Power efficiency</subject><subject>Quadrature amplitude modulation</subject><subject>Signal to noise ratio</subject><subject>symbol error probability</subject><subject>Symbols</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKtfQC8LnrdOJpsmOZalWqGlCHoOu_mjW9amJluw395oi5eZx_De8PgRckthQimoh2W9Xq0mCIgTRoWqeHVGRpRzWWIe51mDVKUQSl6Sq5Q2ACCR0xHh620xfLhiHmOIxWzb9IfUpSL4YuG-m_eQD-XLbFXUYZsG1_fN0GV1TS580yd3c9pj8vY4f60X5XL99FzPlqVB5EM5FdQotI2lrEWPKAzl1PDW2VaBtxVYLqeMtV7lxtZ7Y1CyKTPgrOHCWjYm98e_uxi-9i4NehP2MXdKGgWwikkQIrvw6DIxpBSd17vYfTbxoCnoXzz6D4_-xaNPeHLo7hjqnHP_ASUkV4KzHwVOYD0</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Oikonomou, Thrassos K.</creator><creator>Tegos, Sotiris A.</creator><creator>Tyrovolas, Dimitrios</creator><creator>Diamantoulakis, Panagiotis D.</creator><creator>Karagiannidis, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4345-6246</orcidid><orcidid>https://orcid.org/0000-0001-7795-8311</orcidid><orcidid>https://orcid.org/0000-0002-0782-5844</orcidid><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0000-0001-8967-1203</orcidid></search><sort><creationdate>20220801</creationdate><title>On the Error Analysis of Hexagonal-QAM Constellations</title><author>Oikonomou, Thrassos K. ; Tegos, Sotiris A. ; Tyrovolas, Dimitrios ; Diamantoulakis, Panagiotis D. ; Karagiannidis, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-671c92dad13b2f227c151c5bedb90fd40d58633bf9945dffcc28363c0edc57dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AWGN</topic><topic>Communications systems</topic><topic>Complexity theory</topic><topic>detection scheme</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>Hexagonal lattice</topic><topic>HQAM</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>Power efficiency</topic><topic>Quadrature amplitude modulation</topic><topic>Signal to noise ratio</topic><topic>symbol error probability</topic><topic>Symbols</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oikonomou, Thrassos K.</creatorcontrib><creatorcontrib>Tegos, Sotiris A.</creatorcontrib><creatorcontrib>Tyrovolas, Dimitrios</creatorcontrib><creatorcontrib>Diamantoulakis, Panagiotis D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oikonomou, Thrassos K.</au><au>Tegos, Sotiris A.</au><au>Tyrovolas, Dimitrios</au><au>Diamantoulakis, Panagiotis D.</au><au>Karagiannidis, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Error Analysis of Hexagonal-QAM Constellations</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>1764</spage><epage>1768</epage><pages>1764-1768</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2022.3179454</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4345-6246</orcidid><orcidid>https://orcid.org/0000-0001-7795-8311</orcidid><orcidid>https://orcid.org/0000-0002-0782-5844</orcidid><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0000-0001-8967-1203</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2022-08, Vol.26 (8), p.1764-1768 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2022_3179454 |
source | IEEE Electronic Library (IEL) |
subjects | AWGN Communications systems Complexity theory detection scheme Error analysis Error probability Hexagonal lattice HQAM Mathematical analysis Modulation Power efficiency Quadrature amplitude modulation Signal to noise ratio symbol error probability Symbols Upper bound Upper bounds |
title | On the Error Analysis of Hexagonal-QAM Constellations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Error%20Analysis%20of%20Hexagonal-QAM%20Constellations&rft.jtitle=IEEE%20communications%20letters&rft.au=Oikonomou,%20Thrassos%20K.&rft.date=2022-08-01&rft.volume=26&rft.issue=8&rft.spage=1764&rft.epage=1768&rft.pages=1764-1768&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2022.3179454&rft_dat=%3Cproquest_RIE%3E2703438077%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703438077&rft_id=info:pmid/&rft_ieee_id=9785975&rfr_iscdi=true |