On the Error Analysis of Hexagonal-QAM Constellations
Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2022-08, Vol.26 (8), p.1764-1768 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Future communication systems are envisioned to support applications that require very high data rates in an energy efficient manner. To this direction, the use of hexagonal quadrature amplitude modulation (HQAM) provides high data rates and power efficiency, due to its compact allocation of symbols on the 2D plane. However, because of its hexagonal lattice, it is difficult, if not impossible, to evaluate exactly the error probability. In this letter, we propose a tight upper bound as well as a closed-form approximation for the symbol error probability of HQAM, which are validated from numerical and simulation results. Finally, exploiting the analytical results a novel low complexity detection scheme is presented. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2022.3179454 |