Neural Network-Based Channel Estimation and Detection in Spatial Modulation VLC Systems

We consider a spatial modulation aided indoor visible light communication system with user mobility and random receiver orientation. Two artificial neural networks (ANNs) are proposed which are able to predict the channel state information (CSI) with high accuracy and resolution. These architectures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2022-07, Vol.26 (7), p.1598-1602
Hauptverfasser: Palitharathna, Kapila W. S., Suraweera, Himal A., Godaliyadda, Roshan I., Herath, Vijitha R., Thompson, John S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a spatial modulation aided indoor visible light communication system with user mobility and random receiver orientation. Two artificial neural networks (ANNs) are proposed which are able to predict the channel state information (CSI) with high accuracy and resolution. These architectures use estimated CSI at pilot instances obtained using least square or minimum mean square error estimation and predict CSI at intermediate locations. Moreover in ANN 2, predicted user position information is used to improve the performance. Numerical results show that the proposed ANNs deliver a better bit error rate compared to a benchmark spline interpolation-based method. Further, ANN 2 is shown to perform robustly in a high mobility scenario.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2022.3166221