Automatic Modulation Classification Based on Constellation Density Using Deep Learning

Deep learning (DL) is a newly addressed area of research in the field of modulation classification. In this letter, a constellation density matrix (CDM) based modulation classification algorithm is proposed to identify different orders of ASK, PSK, and QAM. CDM is formed through local density distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2020-06, Vol.24 (6), p.1275-1278
Hauptverfasser: Kumar, Yogesh, Sheoran, Manu, Jajoo, Gaurav, Yadav, Sandeep Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning (DL) is a newly addressed area of research in the field of modulation classification. In this letter, a constellation density matrix (CDM) based modulation classification algorithm is proposed to identify different orders of ASK, PSK, and QAM. CDM is formed through local density distribution of the signal's constellation generated using LabVIEW for a wide range of SNR. Two DL models, ResNet-50 and Inception ResNet V2 are trained through color images formed by filtering the CDM. Classification accuracy achieved demonstrates better performance compared to many existing classifiers in the literature.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2020.2980840