Rate-Adaptive Protograph LDPC Codes for Multi-Level-Cell NAND Flash Memory
The multi-level-cell (MLC) NAND flash memory exhibits a diversity of the raw bit error rate (BER) over different program/erase (P/E) cycles and different types of bits within a memory cell. In this letter, we first apply a protograph-based extrinsic information transfer chart analysis to the MLC fla...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2018-06, Vol.22 (6), p.1112-1115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The multi-level-cell (MLC) NAND flash memory exhibits a diversity of the raw bit error rate (BER) over different program/erase (P/E) cycles and different types of bits within a memory cell. In this letter, we first apply a protograph-based extrinsic information transfer chart analysis to the MLC flash channel and design novel rate-adaptive protograph low-density parity-check (RAP-LDPC) codes by using a code extension approach. The proposed RAP-LDPC code has multiple code rates, which can be adapted dynamically to different P/E cycles. To mitigate the unbalanced raw BERs between different types of bits within a memory cell, we further propose an optimum mapping between the variable nodes of the protograph and different types of bits of the memory cell. Since the proposed RAP-LDPC codes are based on the same parity-check matrix with specific structure, a single protograph encoder/decoder is sufficient to handle all the code rates. Simulation results demonstrate that the proposed RAP-LDPC codes with optimum mapping outperform the irregular LDPC codes for all the code rates with a faster decoding convergence speed for the MLC flash channel. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2018.2814985 |