A General Construction for PMDS Codes

Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2017-03, Vol.21 (3), p.452-455
Hauptverfasser: Calis, Gokhan, Koyluoglu, O. Ozan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 3
container_start_page 452
container_title IEEE communications letters
container_volume 21
creator Calis, Gokhan
Koyluoglu, O. Ozan
description Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.
doi_str_mv 10.1109/LCOMM.2016.2627569
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2016_2627569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7740918</ieee_id><sourcerecordid>10_1109_LCOMM_2016_2627569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</originalsourceid><addsrcrecordid>eNo9j01LxDAQhoMouK7-Ab304rE1kzRfx6XqKrSsoJ5Dk0ygsraSrAf_vV138TLvMMPzwkPINdAKgJq7ttl0XcUoyIpJpoQ0J2QBQuiSzeN03qk2pVJGn5OLnD8opZoJWJDbVbHGEVO_LZppzLv07XfDNBZxSsVLd_86XwPmS3IW-23Gq2Muyfvjw1vzVLab9XOzakvPAXZl7DF4z4VxXrteRF5HHh0YjyA5oIxOS06D4Y7h_PBSeRVrHYKT0YcY-JKwQ69PU84Jo_1Kw2effixQuxe1f6J2L2qPojN0c4AGRPwHlKqpAc1_Aag1T5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A General Construction for PMDS Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Calis, Gokhan ; Koyluoglu, O. Ozan</creator><creatorcontrib>Calis, Gokhan ; Koyluoglu, O. Ozan</creatorcontrib><description>Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2627569</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; combinatorial designs ; Encoding ; Gabidulin codes ; Generators ; Interpolation ; Maintenance engineering ; Manganese ; maximally recoverable codes ; PMDS codes ; Systematics</subject><ispartof>IEEE communications letters, 2017-03, Vol.21 (3), p.452-455</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</citedby><cites>FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</cites><orcidid>0000-0002-7233-2747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7740918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7740918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Calis, Gokhan</creatorcontrib><creatorcontrib>Koyluoglu, O. Ozan</creatorcontrib><title>A General Construction for PMDS Codes</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.</description><subject>Arrays</subject><subject>combinatorial designs</subject><subject>Encoding</subject><subject>Gabidulin codes</subject><subject>Generators</subject><subject>Interpolation</subject><subject>Maintenance engineering</subject><subject>Manganese</subject><subject>maximally recoverable codes</subject><subject>PMDS codes</subject><subject>Systematics</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01LxDAQhoMouK7-Ab304rE1kzRfx6XqKrSsoJ5Dk0ygsraSrAf_vV138TLvMMPzwkPINdAKgJq7ttl0XcUoyIpJpoQ0J2QBQuiSzeN03qk2pVJGn5OLnD8opZoJWJDbVbHGEVO_LZppzLv07XfDNBZxSsVLd_86XwPmS3IW-23Gq2Muyfvjw1vzVLab9XOzakvPAXZl7DF4z4VxXrteRF5HHh0YjyA5oIxOS06D4Y7h_PBSeRVrHYKT0YcY-JKwQ69PU84Jo_1Kw2effixQuxe1f6J2L2qPojN0c4AGRPwHlKqpAc1_Aag1T5U</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Calis, Gokhan</creator><creator>Koyluoglu, O. Ozan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7233-2747</orcidid></search><sort><creationdate>201703</creationdate><title>A General Construction for PMDS Codes</title><author>Calis, Gokhan ; Koyluoglu, O. Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>combinatorial designs</topic><topic>Encoding</topic><topic>Gabidulin codes</topic><topic>Generators</topic><topic>Interpolation</topic><topic>Maintenance engineering</topic><topic>Manganese</topic><topic>maximally recoverable codes</topic><topic>PMDS codes</topic><topic>Systematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calis, Gokhan</creatorcontrib><creatorcontrib>Koyluoglu, O. Ozan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calis, Gokhan</au><au>Koyluoglu, O. Ozan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Construction for PMDS Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2017-03</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>452</spage><epage>455</epage><pages>452-455</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2627569</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7233-2747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2017-03, Vol.21 (3), p.452-455
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2016_2627569
source IEEE Electronic Library (IEL)
subjects Arrays
combinatorial designs
Encoding
Gabidulin codes
Generators
Interpolation
Maintenance engineering
Manganese
maximally recoverable codes
PMDS codes
Systematics
title A General Construction for PMDS Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Construction%20for%20PMDS%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Calis,%20Gokhan&rft.date=2017-03&rft.volume=21&rft.issue=3&rft.spage=452&rft.epage=455&rft.pages=452-455&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2627569&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2016_2627569%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7740918&rfr_iscdi=true