A General Construction for PMDS Codes
Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2017-03, Vol.21 (3), p.452-455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 3 |
container_start_page | 452 |
container_title | IEEE communications letters |
container_volume | 21 |
creator | Calis, Gokhan Koyluoglu, O. Ozan |
description | Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed. |
doi_str_mv | 10.1109/LCOMM.2016.2627569 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2016_2627569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7740918</ieee_id><sourcerecordid>10_1109_LCOMM_2016_2627569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</originalsourceid><addsrcrecordid>eNo9j01LxDAQhoMouK7-Ab304rE1kzRfx6XqKrSsoJ5Dk0ygsraSrAf_vV138TLvMMPzwkPINdAKgJq7ttl0XcUoyIpJpoQ0J2QBQuiSzeN03qk2pVJGn5OLnD8opZoJWJDbVbHGEVO_LZppzLv07XfDNBZxSsVLd_86XwPmS3IW-23Gq2Muyfvjw1vzVLab9XOzakvPAXZl7DF4z4VxXrteRF5HHh0YjyA5oIxOS06D4Y7h_PBSeRVrHYKT0YcY-JKwQ69PU84Jo_1Kw2effixQuxe1f6J2L2qPojN0c4AGRPwHlKqpAc1_Aag1T5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A General Construction for PMDS Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Calis, Gokhan ; Koyluoglu, O. Ozan</creator><creatorcontrib>Calis, Gokhan ; Koyluoglu, O. Ozan</creatorcontrib><description>Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2627569</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; combinatorial designs ; Encoding ; Gabidulin codes ; Generators ; Interpolation ; Maintenance engineering ; Manganese ; maximally recoverable codes ; PMDS codes ; Systematics</subject><ispartof>IEEE communications letters, 2017-03, Vol.21 (3), p.452-455</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</citedby><cites>FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</cites><orcidid>0000-0002-7233-2747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7740918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7740918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Calis, Gokhan</creatorcontrib><creatorcontrib>Koyluoglu, O. Ozan</creatorcontrib><title>A General Construction for PMDS Codes</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.</description><subject>Arrays</subject><subject>combinatorial designs</subject><subject>Encoding</subject><subject>Gabidulin codes</subject><subject>Generators</subject><subject>Interpolation</subject><subject>Maintenance engineering</subject><subject>Manganese</subject><subject>maximally recoverable codes</subject><subject>PMDS codes</subject><subject>Systematics</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01LxDAQhoMouK7-Ab304rE1kzRfx6XqKrSsoJ5Dk0ygsraSrAf_vV138TLvMMPzwkPINdAKgJq7ttl0XcUoyIpJpoQ0J2QBQuiSzeN03qk2pVJGn5OLnD8opZoJWJDbVbHGEVO_LZppzLv07XfDNBZxSsVLd_86XwPmS3IW-23Gq2Muyfvjw1vzVLab9XOzakvPAXZl7DF4z4VxXrteRF5HHh0YjyA5oIxOS06D4Y7h_PBSeRVrHYKT0YcY-JKwQ69PU84Jo_1Kw2effixQuxe1f6J2L2qPojN0c4AGRPwHlKqpAc1_Aag1T5U</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Calis, Gokhan</creator><creator>Koyluoglu, O. Ozan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7233-2747</orcidid></search><sort><creationdate>201703</creationdate><title>A General Construction for PMDS Codes</title><author>Calis, Gokhan ; Koyluoglu, O. Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-faedcc359bc8ba5f34f3fb19ce1631e6fb8630d93b2e3fbc67c7f48ddb6fcdfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Arrays</topic><topic>combinatorial designs</topic><topic>Encoding</topic><topic>Gabidulin codes</topic><topic>Generators</topic><topic>Interpolation</topic><topic>Maintenance engineering</topic><topic>Manganese</topic><topic>maximally recoverable codes</topic><topic>PMDS codes</topic><topic>Systematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calis, Gokhan</creatorcontrib><creatorcontrib>Koyluoglu, O. Ozan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calis, Gokhan</au><au>Koyluoglu, O. Ozan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Construction for PMDS Codes</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2017-03</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>452</spage><epage>455</epage><pages>452-455</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2627569</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7233-2747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2017-03, Vol.21 (3), p.452-455 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2016_2627569 |
source | IEEE Electronic Library (IEL) |
subjects | Arrays combinatorial designs Encoding Gabidulin codes Generators Interpolation Maintenance engineering Manganese maximally recoverable codes PMDS codes Systematics |
title | A General Construction for PMDS Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Construction%20for%20PMDS%20Codes&rft.jtitle=IEEE%20communications%20letters&rft.au=Calis,%20Gokhan&rft.date=2017-03&rft.volume=21&rft.issue=3&rft.spage=452&rft.epage=455&rft.pages=452-455&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2627569&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2016_2627569%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7740918&rfr_iscdi=true |