A General Construction for PMDS Codes

Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2017-03, Vol.21 (3), p.452-455
Hauptverfasser: Calis, Gokhan, Koyluoglu, O. Ozan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partial MDS [(PMDS) also known as maximally recoverable] codes allow for local erasure recovery by utilizing row-wise parities and additional erasure correction through global parities. Recent works on PMDS codes focus on special case parameter settings, and a general construction for PMDS codes is stated as an open problem. This letter provides an explicit construction for PMDS codes for all parameters utilizing concatenation of Gabidulin and MDS codes, a technique originally proposed by Rawat et al. for constructing optimal locally repairable codes. This approach allows for PMDS constructions for any parameters albeit with large field sizes. To lower the field size, a relaxation on the rate requirement is considered, and PMDS codes based on combinatorial designs are constructed.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2016.2627569