Channel Model for Satellite Communication Links Above 10GHz Based on Weibull Distribution
Modern satellite communication networks will employ frequencies above 10GHz. At these frequency bands, rain attenuation is the dominant fading mechanism. In this paper, a novel channel model, a synthesizer for generating rain attenuation time series for satellite links operating at 10GHz and above i...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2014-04, Vol.18 (4), p.568-571 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modern satellite communication networks will employ frequencies above 10GHz. At these frequency bands, rain attenuation is the dominant fading mechanism. In this paper, a novel channel model, a synthesizer for generating rain attenuation time series for satellite links operating at 10GHz and above is presented. The proposed channel model modifies Maseng-Bakken (M-B) model since it generates rain attenuation time series that follow the Weibull distribution. The new stochastic dynamic model is based on the first-order Stochastic Differential Equations (SDEs) and considers rain attenuation induced on a slant path as a Weibull-based stochastic process. Moreover, the theoretical expressions for the computation of the exceedance probability of hitting time random variable are presented. The hitting time statistics may be employed for the optimum design of Fade Mitigation Techniques (FMTs). The synthesizer is verified in terms of the exceedance probability and the theoretical CCDF of hitting time comparing to these derived from the simulations in the numerical results section. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2014.013114.131950 |