PreGNN: Hardware Acceleration to Take Preprocessing Off the Critical Path in Graph Neural Networks

In this paper, we observe that the main performance bottleneck of emerging graph neural networks (GNNs) is not the inference algorithms themselves, but their graph data preprocessing. To take such preprocessing off the critical path in GNNs, we propose PreGNN , a novel hardware automation architectu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE computer architecture letters 2022-07, Vol.21 (2), p.117-120
Hauptverfasser: Gouk, Donghyun, Kang, Seungkwan, Kwon, Miryeong, Jang, Junhyeok, Choi, Hyunkyu, Lee, Sangwon, Jung, Myoungsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we observe that the main performance bottleneck of emerging graph neural networks (GNNs) is not the inference algorithms themselves, but their graph data preprocessing. To take such preprocessing off the critical path in GNNs, we propose PreGNN , a novel hardware automation architecture that accelerates all the tasks of GNN preprocessing from the beginning to the end. Specifically, PreGNN accelerates graph generation in parallel, samples neighbor nodes of a given graph, and prepares graph datasets through all hardware. To reduce the long latency of GNN preprocessing over hardware, we also propose simple, efficient combinational logic that can perform radix sort and arrange the data in a self-governing manner. The evaluation results show that PreGNN can shorten the end-to-end latency of GNN inferences by 10.7× while consuming less energy by 3.3×, compared to a GPU-only system.
ISSN:1556-6056
1556-6064
DOI:10.1109/LCA.2022.3193256