Norm-1 Regularized Consensus-Based ADMM for Imaging With a Compressive Antenna

This letter presents a novel norm-1-regularized, consensus-based imaging algorithm, based on the alternating direction method of multipliers (ADMM). This algorithm is capable of imaging metallic targets by using a limited amount of data. The distributed capabilities of the algorithm enable a fast im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2017-01, Vol.16, p.2362-2365
Hauptverfasser: Heredia-Juesas, Juan, Molaei, Ali, Tirado, Luis, Blackwell, William, Martinez-Lorenzo, Jose A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a novel norm-1-regularized, consensus-based imaging algorithm, based on the alternating direction method of multipliers (ADMM). This algorithm is capable of imaging metallic targets by using a limited amount of data. The distributed capabilities of the algorithm enable a fast imaging convergence. Recently, a compressive reflector antenna (CRA) has been proposed as a way to provide high sensing capacity with a minimum cost and complexity in the hardware architecture. The ADMM algorithm applied to the imaging capabilities of the CRA outperforms current state-of-the-art iterative reconstruction algorithms, such as Nesterov-based methods, in terms of computational cost, enabling the use of the CRA in quasi-real-time, compressive sensing imaging applications.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2017.2718242