Graphene-Flakes Printed Wideband Elliptical Dipole Antenna for Low-Cost Wireless Communications Applications
This letter presents the design, manufacturing, and operational performance of a graphene-flakes-based screen-printed wideband elliptical dipole antenna operating from 2 up to 5 GHz for low-cost wireless communications applications. To investigate radio frequency (RF) conductivity of the printed gra...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2017, Vol.16, p.1883-1886 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This letter presents the design, manufacturing, and operational performance of a graphene-flakes-based screen-printed wideband elliptical dipole antenna operating from 2 up to 5 GHz for low-cost wireless communications applications. To investigate radio frequency (RF) conductivity of the printed graphene, a coplanar waveguide (CPW) test structure was designed, fabricated, and tested in the frequency range from 1 to 20 GHz. Antenna and CPW were screen-printed on Kapton substrates using a graphene paste formulated with a graphene-to-binder ratio of 1:2. A combination of thermal treatment and subsequent compression rolling is utilized to further decrease the sheet resistance for printed graphene structures, ultimately reaching 4 Ω/□ at 10-μ m thicknesses. For the graphene-flakes printed antenna, an antenna efficiency of 60% is obtained. The measured maximum antenna gain is 2.3 dBi at 4.8 GHz. Thus, the graphene-flakes printed antenna adds a total loss of only 3.1 dB to an RF link when compared to the same structure screen-printed for reference with a commercial silver ink. This shows that the electrical performance of screen-printed graphene flakes, which also does not degrade after repeated bending, is suitable for realizing low-cost wearable RF wireless communication devices. |
---|---|
ISSN: | 1536-1225 1548-5757 |
DOI: | 10.1109/LAWP.2017.2684907 |