A Compact Omnidirectional Self-Packaged Patch Antenna With Complementary Split-Ring Resonator Loading for Wireless Endoscope Applications
A patch loaded with a complementary split-ring resonator (CSRR) is fabricated on a flexible substrate and folded in a cylindrical shape, forming a self-packaged folded patch antenna with a quasi-omnidirectional radiation pattern. The space inside the cylindrical cavity is electromagnetically shielde...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2011, Vol.10, p.1532-1535 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A patch loaded with a complementary split-ring resonator (CSRR) is fabricated on a flexible substrate and folded in a cylindrical shape, forming a self-packaged folded patch antenna with a quasi-omnidirectional radiation pattern. The space inside the cylindrical cavity is electromagnetically shielded by the ground plane of the patch, and therefore electronic circuits can be accommodated in it with little electromagnetic interference (EMI) from the antenna or other external electronics. The CSRR contributes to size reduction. As a test vehicle, a 2.4-GHz ISM-band folded patch antenna is designed, fabricated, and characterized for a wireless capsule endoscope application, where the implemented antenna has a patch length of 10.5 mm (0.11λ ) and a folded cylinder diameter of 10 mm. A 74% size reduction is achieved after CSRR loading. The antenna located at the outermost surface not only functions as an electromagnetic radiator and an EMI shield, but also serve as a mechanical packaging structure. |
---|---|
ISSN: | 1536-1225 1548-5757 |
DOI: | 10.1109/LAWP.2011.2181315 |