Res-SE-ConvNet: A Deep Neural Network for Hypoxemia Severity Prediction for Hospital In-Patients Using Photoplethysmograph Signal

Determining the severity level of hypoxemia, the scarcity of saturated oxygen (SpO2) in the human body, is very important for the patients, a matter which has become even more significant during the outbreak of Covid-19 variants. Although the widespread usage of Pulse Oximeter has helped the doctors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of translational engineering in health and medicine 2022-01, Vol.10, p.1-9
Hauptverfasser: Mahmud, Talha Ibn, Imran, Sheikh Asif, Shahnaz, Celia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determining the severity level of hypoxemia, the scarcity of saturated oxygen (SpO2) in the human body, is very important for the patients, a matter which has become even more significant during the outbreak of Covid-19 variants. Although the widespread usage of Pulse Oximeter has helped the doctors aware of the current level of SpO2 and thereby determine the hypoxemia severity of a particular patient, the high sensitivity of the device can lead to the desensitization of the care-givers, resulting in slower response to actual hypoxemia event. There has been research conducted for the detection of severity level using various parameters and bio-signals and feeding them in a machine learning algorithm. However, in this paper, we have proposed a new residual-squeeze-excitation-attention based convolutional network (Res-SE-ConvNet) using only Photoplethysmography (PPG) signal for the comfortability of the patient. Unlike the other methods, the proposed method has outperformed the standard state-of-art methods as the result shows 96.5% accuracy in determining 3 class severity problems with 0.79 Cohen Kappa score. This method has the potential to aid the patients in receiving the benefit of an automatic and faster clinical decision support system, thus handling the severity of hypoxemia.
ISSN:2168-2372
2168-2372
DOI:10.1109/JTEHM.2022.3217428