Automotive Radar Signal Processing: Research Directions and Practical Challenges
Automotive radar is used in many applications of advanced driver assistance systems and is considered as one of the key technologies for highly automated driving. An overview of state-of-the-art signal processing in automotive radar is presented along with current research directions and practical c...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2021-06, Vol.15 (4), p.865-878 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automotive radar is used in many applications of advanced driver assistance systems and is considered as one of the key technologies for highly automated driving. An overview of state-of-the-art signal processing in automotive radar is presented along with current research directions and practical challenges. We provide a comprehensive signal model for the multiple-target case using multiple-input multiple-output schemes, and discuss a practical processing chain to calculate the target list. To demonstrate the capabilities of a modern series production high-performance radar sensor, real data examples are given. An overview of conventional target processing and recent research activities in machine learning and deep learning approaches is presented. Additionally, recent methods for practically relevant radar-camera fusion are discussed. |
---|---|
ISSN: | 1932-4553 1941-0484 |
DOI: | 10.1109/JSTSP.2021.3063666 |