First Near-Ultraviolet- and Blue-Enhanced Backside-Illuminated Single-Photon Avalanche Diode Based on Standard SOI CMOS Technology

We present the world's first backside-illuminated (BSI) single-photon avalanche diode (SPAD) based on standard silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. This SPAD achieves a good dark count rate (DCR) after backside etching, comparable to DCRs of BSI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2019-09, Vol.25 (5), p.1-6
Hauptverfasser: Myung-Jae Lee, Pengfei Sun, Pandraud, Gregory, Bruschini, Claudio, Charbon, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the world's first backside-illuminated (BSI) single-photon avalanche diode (SPAD) based on standard silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. This SPAD achieves a good dark count rate (DCR) after backside etching, comparable to DCRs of BSI SPADs fabricated on bulk wafers. Unlike bulk-wafer-based BSI SPADs, which typically suffer from poor violet and blue sensitivity, the proposed BSI SPAD features increased near-ultraviolet sensitivity as well as significant sensitivity in the violet and blue spectral ranges, thanks to the ultrathin-body SOI. To the best of our knowledge, this is the best result ever reported for any BSI SPAD in the standard CMOS technology. In addition, it also shows high sensitivity at long wavelengths thanks to the interface between silicon and silicon-dioxide layers. Therefore, it achieves a photon detection probability over 26% at 500 nm and 10% in the 400-875 nm wavelength range at 3 V excess bias voltage. The timing jitter is 119 ps full width at half maximum at the same operation condition at 637 nm wavelength. For the proposed BSI SPAD, the buried oxide layer in SOI wafers is used as an etching stop during the wafer backside-etching process, and therefore it ensures the excellent performance uniformity in large arrays.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2019.2918930