Frequency Ageing and Noise Evolution in a Distributed Feedback Quantum Cascade Laser Measured Over a Two-Month Period

We report on the evaluation of the frequency stability of a distributed feedback quantum cascade laser (QCL) at 8 μm that was continuously monitored over a 2-month period using a spectroscopic setup. The QCL was operated in continuous wave mode at room temperature (21.4 °C). It was driven by a home-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2015-11, Vol.21 (6), p.68-73
Hauptverfasser: Schilt, Stephane, Tombez, Lionel, Tardy, Camille, Bismuto, Alfredo, Blaser, Stephane, Maulini, Richard, Terazzi, Romain, Rochat, Michel, Sudmeyer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the evaluation of the frequency stability of a distributed feedback quantum cascade laser (QCL) at 8 μm that was continuously monitored over a 2-month period using a spectroscopic setup. The QCL was operated in continuous wave mode at room temperature (21.4 °C). It was driven by a home-made low-noise controller at a nominal current of ~600 mA located in the middle of its operation range. Two distinctive behaviors were observed. A monotonous frequency drift of about 1.8 GHz was observed during slightly more than the first month, followed by a stable regime in the second month where the frequency remained within a 100 MHz range. In addition, the electrical flicker noise of the QCL was regularly measured during the same period, and similarly showed two different regimes. The noise regularly decreased at a small rate of about 0.3%/day during the first month, whereas it tends to stabilize during the second month. We believe that an improvement of the QCL contacts over time is responsible for this behavior. After the initial one-month period, the QCL showed a remarkably stable behavior that is beneficial for many applications that require stable long-term operation.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2015.2413962