Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing

Ultrahigh nonlinear tapered fiber and planar rib Chalcogenide waveguides have been developed to enable highspeed all-optical signal processing in compact, low-loss optical devices through the use of four-wave mixing (FWM) and cross-phase modulation (XPM) via the ultra fast Kerr effect. Tapering a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2008-05, Vol.14 (3), p.529-539
Hauptverfasser: Pelusi, M.D., Ta'eed, V.G., Libin Fu, Magi, E., Lamont, M.R.E., Madden, S., Duk-Yong Choi, Bulla, D.A.P., Luther-Davies, B., Eggleton, B.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrahigh nonlinear tapered fiber and planar rib Chalcogenide waveguides have been developed to enable highspeed all-optical signal processing in compact, low-loss optical devices through the use of four-wave mixing (FWM) and cross-phase modulation (XPM) via the ultra fast Kerr effect. Tapering a commercial As 2 Se 3 fiber is shown to reduce its effective core area and enhance the Kerr nonlinearity thereby enabling XPM wavelength conversion of a 40 Gb/s signal in a shorter 16-cm length device that allows a broader wavelength tuning range due to its smaller net chromatic dispersion. Progress toward photonic chip-scale devices is shown by fabricating As 2 S 3 planar rib waveguides exhibiting nonlinearity up to 2080 W -1 ldr km -1 and losses as low as 0.05 dB/cm. The material's high refractive index, ensuring more robust confinement of the optical mode, permits a more compact serpentine-shaped rib waveguide of 22.5 cm length on a 7-cm- size chip, which is successfully applied to broadband wavelength conversion of 40-80 Gb/s signals by XPM. A shorter 5-cm length planar waveguide proves most effective for all-optical time-division demultiplexing of a 160 Gb/s signal by FWM and analysis shows its length is near optimum for maximizing FWM in consideration of its dispersion and loss.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2008.918669