Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing
Ultrahigh nonlinear tapered fiber and planar rib Chalcogenide waveguides have been developed to enable highspeed all-optical signal processing in compact, low-loss optical devices through the use of four-wave mixing (FWM) and cross-phase modulation (XPM) via the ultra fast Kerr effect. Tapering a co...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2008-05, Vol.14 (3), p.529-539 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrahigh nonlinear tapered fiber and planar rib Chalcogenide waveguides have been developed to enable highspeed all-optical signal processing in compact, low-loss optical devices through the use of four-wave mixing (FWM) and cross-phase modulation (XPM) via the ultra fast Kerr effect. Tapering a commercial As 2 Se 3 fiber is shown to reduce its effective core area and enhance the Kerr nonlinearity thereby enabling XPM wavelength conversion of a 40 Gb/s signal in a shorter 16-cm length device that allows a broader wavelength tuning range due to its smaller net chromatic dispersion. Progress toward photonic chip-scale devices is shown by fabricating As 2 S 3 planar rib waveguides exhibiting nonlinearity up to 2080 W -1 ldr km -1 and losses as low as 0.05 dB/cm. The material's high refractive index, ensuring more robust confinement of the optical mode, permits a more compact serpentine-shaped rib waveguide of 22.5 cm length on a 7-cm- size chip, which is successfully applied to broadband wavelength conversion of 40-80 Gb/s signals by XPM. A shorter 5-cm length planar waveguide proves most effective for all-optical time-division demultiplexing of a 160 Gb/s signal by FWM and analysis shows its length is near optimum for maximizing FWM in consideration of its dispersion and loss. |
---|---|
ISSN: | 1077-260X 1558-4542 |
DOI: | 10.1109/JSTQE.2008.918669 |