Raman amplifiers for telecommunications

Raman amplifiers are being deployed in almost every new long-haul and ultralong-haul fiber-optic transmission systems, making them one of the first widely commercialized nonlinear optical devices in telecommunications. This paper reviews some of the technical reasons behind the wide-spread acceptanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2002-05, Vol.8 (3), p.548-559
1. Verfasser: Islam, M.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Raman amplifiers are being deployed in almost every new long-haul and ultralong-haul fiber-optic transmission systems, making them one of the first widely commercialized nonlinear optical devices in telecommunications. This paper reviews some of the technical reasons behind the wide-spread acceptance of Raman technology. Distributed Raman amplifiers improve the noise figure and reduce the nonlinear penalty of fiber systems, allowing for longer amplifier spans, higher bit rates, closer channel spacing, and operation near the zero-dispersion wavelength. Lumped or discrete Raman amplifiers are primarily used to increase the capacity of fiber-optic networks, opening up new wavelength windows for wavelength-division multiplexing such as the 1300 nm, 1400 nm, or short-wavelength S-band. As an example, using a cascade of S-band lumped amplifiers, a 20-channel, OC-192 system is shown that propagates over 867 km of standard, single-mode fiber. Raman amplifiers provide a simple single platform for long-haul and ultralong-haul amplifier needs and, therefore, should see a wide range of deployment in the next few years.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2002.1016358