A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range
This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2024-05, Vol.59 (5), p.1486-1496 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1496 |
---|---|
container_issue | 5 |
container_start_page | 1486 |
container_title | IEEE journal of solid-state circuits |
container_volume | 59 |
creator | Xu, Wei Li, Zhijuan Fang, Zetao Wang, Bo Hong, Linze Yang, Gai Han, Su-Ting Zhao, Xiaojin Wang, Xiaoyi |
description | This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 \mu \text{m} for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 \mu \text{m} /s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy. |
doi_str_mv | 10.1109/JSSC.2023.3314765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2023_3314765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10260316</ieee_id><sourcerecordid>3044636711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsFYfQPBiweu0s4cc9rKEeqKhaCr1btkkkzYlTepui_hYvoJPZkJ74dUw8P3_DB8htwxGjIEav6RpPOLAxUgIJsPAPyMD5vuRx0LxcU4GACzyFAe4JFfObbpVyogNyOuEpofM87dLmrRNW1f7dZXTOJmnXjJNUrpYo92amj7U7RdNsXFVs6JpG9NlR9Lfn4Bux47OqgaNpW-mWeE1uShN7fDmNIfk_WG6iJ-82fzxOZ7MvJwrufcUijKLAJQ0godZlEko80xh4ffvK6WgYIKjEQiSy5BhLlRe5H4pSgloCjEk98fenW0_D-j2etMebNOd1AKkDEQQMtZR7EjltnXOYql3ttoa-60Z6N6c7s3p3pw-mesyd8dMhYj_eB6AYIH4A1-gZ40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044636711</pqid></control><display><type>article</type><title>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Wei ; Li, Zhijuan ; Fang, Zetao ; Wang, Bo ; Hong, Linze ; Yang, Gai ; Han, Su-Ting ; Zhao, Xiaojin ; Wang, Xiaoyi</creator><creatorcontrib>Xu, Wei ; Li, Zhijuan ; Fang, Zetao ; Wang, Bo ; Hong, Linze ; Yang, Gai ; Han, Su-Ting ; Zhao, Xiaojin ; Wang, Xiaoyi</creatorcontrib><description><![CDATA[This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3314765</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS interface ; complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration ; Control equipment ; Fluid flow ; gas flow ; linear range ; low power ; Low power electronics ; MEMS ; Microelectromechanical systems ; Monolithic integrated circuits ; Peclet number ; Semiconductor device measurement ; Sensitivity ; Sensor systems ; System-on-chip ; Temperature gradients ; Temperature sensors ; thermal flow sensor ; Thermistors</subject><ispartof>IEEE journal of solid-state circuits, 2024-05, Vol.59 (5), p.1486-1496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</citedby><cites>FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</cites><orcidid>0000-0001-6196-3693 ; 0000-0002-6286-3085 ; 0000-0002-9359-4869 ; 0009-0003-9109-6115 ; 0000-0002-9965-3516 ; 0000-0003-3392-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10260316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10260316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Zhijuan</creatorcontrib><creatorcontrib>Fang, Zetao</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Hong, Linze</creatorcontrib><creatorcontrib>Yang, Gai</creatorcontrib><creatorcontrib>Han, Su-Ting</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><title>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.]]></description><subject>CMOS</subject><subject>CMOS interface</subject><subject>complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration</subject><subject>Control equipment</subject><subject>Fluid flow</subject><subject>gas flow</subject><subject>linear range</subject><subject>low power</subject><subject>Low power electronics</subject><subject>MEMS</subject><subject>Microelectromechanical systems</subject><subject>Monolithic integrated circuits</subject><subject>Peclet number</subject><subject>Semiconductor device measurement</subject><subject>Sensitivity</subject><subject>Sensor systems</subject><subject>System-on-chip</subject><subject>Temperature gradients</subject><subject>Temperature sensors</subject><subject>thermal flow sensor</subject><subject>Thermistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtKw0AQhhdRsFYfQPBiweu0s4cc9rKEeqKhaCr1btkkkzYlTepui_hYvoJPZkJ74dUw8P3_DB8htwxGjIEav6RpPOLAxUgIJsPAPyMD5vuRx0LxcU4GACzyFAe4JFfObbpVyogNyOuEpofM87dLmrRNW1f7dZXTOJmnXjJNUrpYo92amj7U7RdNsXFVs6JpG9NlR9Lfn4Bux47OqgaNpW-mWeE1uShN7fDmNIfk_WG6iJ-82fzxOZ7MvJwrufcUijKLAJQ0godZlEko80xh4ffvK6WgYIKjEQiSy5BhLlRe5H4pSgloCjEk98fenW0_D-j2etMebNOd1AKkDEQQMtZR7EjltnXOYql3ttoa-60Z6N6c7s3p3pw-mesyd8dMhYj_eB6AYIH4A1-gZ40</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xu, Wei</creator><creator>Li, Zhijuan</creator><creator>Fang, Zetao</creator><creator>Wang, Bo</creator><creator>Hong, Linze</creator><creator>Yang, Gai</creator><creator>Han, Su-Ting</creator><creator>Zhao, Xiaojin</creator><creator>Wang, Xiaoyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0002-9359-4869</orcidid><orcidid>https://orcid.org/0009-0003-9109-6115</orcidid><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></search><sort><creationdate>20240501</creationdate><title>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</title><author>Xu, Wei ; Li, Zhijuan ; Fang, Zetao ; Wang, Bo ; Hong, Linze ; Yang, Gai ; Han, Su-Ting ; Zhao, Xiaojin ; Wang, Xiaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CMOS</topic><topic>CMOS interface</topic><topic>complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration</topic><topic>Control equipment</topic><topic>Fluid flow</topic><topic>gas flow</topic><topic>linear range</topic><topic>low power</topic><topic>Low power electronics</topic><topic>MEMS</topic><topic>Microelectromechanical systems</topic><topic>Monolithic integrated circuits</topic><topic>Peclet number</topic><topic>Semiconductor device measurement</topic><topic>Sensitivity</topic><topic>Sensor systems</topic><topic>System-on-chip</topic><topic>Temperature gradients</topic><topic>Temperature sensors</topic><topic>thermal flow sensor</topic><topic>Thermistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Zhijuan</creatorcontrib><creatorcontrib>Fang, Zetao</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Hong, Linze</creatorcontrib><creatorcontrib>Yang, Gai</creatorcontrib><creatorcontrib>Han, Su-Ting</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Wei</au><au>Li, Zhijuan</au><au>Fang, Zetao</au><au>Wang, Bo</au><au>Hong, Linze</au><au>Yang, Gai</au><au>Han, Su-Ting</au><au>Zhao, Xiaojin</au><au>Wang, Xiaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>59</volume><issue>5</issue><spage>1486</spage><epage>1496</epage><pages>1486-1496</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3314765</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0002-9359-4869</orcidid><orcidid>https://orcid.org/0009-0003-9109-6115</orcidid><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2024-05, Vol.59 (5), p.1486-1496 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2023_3314765 |
source | IEEE Electronic Library (IEL) |
subjects | CMOS CMOS interface complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration Control equipment Fluid flow gas flow linear range low power Low power electronics MEMS Microelectromechanical systems Monolithic integrated circuits Peclet number Semiconductor device measurement Sensitivity Sensor systems System-on-chip Temperature gradients Temperature sensors thermal flow sensor Thermistors |
title | A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sub-5mW%20Monolithic%20CMOS-MEMS%20Thermal%20Flow%20Sensing%20SoC%20With%20%C2%B16%20m/s%20Linear%20Range&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Xu,%20Wei&rft.date=2024-05-01&rft.volume=59&rft.issue=5&rft.spage=1486&rft.epage=1496&rft.pages=1486-1496&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3314765&rft_dat=%3Cproquest_RIE%3E3044636711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044636711&rft_id=info:pmid/&rft_ieee_id=10260316&rfr_iscdi=true |