A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range

This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2024-05, Vol.59 (5), p.1486-1496
Hauptverfasser: Xu, Wei, Li, Zhijuan, Fang, Zetao, Wang, Bo, Hong, Linze, Yang, Gai, Han, Su-Ting, Zhao, Xiaojin, Wang, Xiaoyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1496
container_issue 5
container_start_page 1486
container_title IEEE journal of solid-state circuits
container_volume 59
creator Xu, Wei
Li, Zhijuan
Fang, Zetao
Wang, Bo
Hong, Linze
Yang, Gai
Han, Su-Ting
Zhao, Xiaojin
Wang, Xiaoyi
description This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 \mu \text{m} for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 \mu \text{m} /s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.
doi_str_mv 10.1109/JSSC.2023.3314765
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2023_3314765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10260316</ieee_id><sourcerecordid>3044636711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsFYfQPBiweu0s4cc9rKEeqKhaCr1btkkkzYlTepui_hYvoJPZkJ74dUw8P3_DB8htwxGjIEav6RpPOLAxUgIJsPAPyMD5vuRx0LxcU4GACzyFAe4JFfObbpVyogNyOuEpofM87dLmrRNW1f7dZXTOJmnXjJNUrpYo92amj7U7RdNsXFVs6JpG9NlR9Lfn4Bux47OqgaNpW-mWeE1uShN7fDmNIfk_WG6iJ-82fzxOZ7MvJwrufcUijKLAJQ0godZlEko80xh4ffvK6WgYIKjEQiSy5BhLlRe5H4pSgloCjEk98fenW0_D-j2etMebNOd1AKkDEQQMtZR7EjltnXOYql3ttoa-60Z6N6c7s3p3pw-mesyd8dMhYj_eB6AYIH4A1-gZ40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044636711</pqid></control><display><type>article</type><title>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Wei ; Li, Zhijuan ; Fang, Zetao ; Wang, Bo ; Hong, Linze ; Yang, Gai ; Han, Su-Ting ; Zhao, Xiaojin ; Wang, Xiaoyi</creator><creatorcontrib>Xu, Wei ; Li, Zhijuan ; Fang, Zetao ; Wang, Bo ; Hong, Linze ; Yang, Gai ; Han, Su-Ting ; Zhao, Xiaojin ; Wang, Xiaoyi</creatorcontrib><description><![CDATA[This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3314765</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; CMOS interface ; complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration ; Control equipment ; Fluid flow ; gas flow ; linear range ; low power ; Low power electronics ; MEMS ; Microelectromechanical systems ; Monolithic integrated circuits ; Peclet number ; Semiconductor device measurement ; Sensitivity ; Sensor systems ; System-on-chip ; Temperature gradients ; Temperature sensors ; thermal flow sensor ; Thermistors</subject><ispartof>IEEE journal of solid-state circuits, 2024-05, Vol.59 (5), p.1486-1496</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</citedby><cites>FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</cites><orcidid>0000-0001-6196-3693 ; 0000-0002-6286-3085 ; 0000-0002-9359-4869 ; 0009-0003-9109-6115 ; 0000-0002-9965-3516 ; 0000-0003-3392-7569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10260316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10260316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Zhijuan</creatorcontrib><creatorcontrib>Fang, Zetao</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Hong, Linze</creatorcontrib><creatorcontrib>Yang, Gai</creatorcontrib><creatorcontrib>Han, Su-Ting</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><title>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.]]></description><subject>CMOS</subject><subject>CMOS interface</subject><subject>complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration</subject><subject>Control equipment</subject><subject>Fluid flow</subject><subject>gas flow</subject><subject>linear range</subject><subject>low power</subject><subject>Low power electronics</subject><subject>MEMS</subject><subject>Microelectromechanical systems</subject><subject>Monolithic integrated circuits</subject><subject>Peclet number</subject><subject>Semiconductor device measurement</subject><subject>Sensitivity</subject><subject>Sensor systems</subject><subject>System-on-chip</subject><subject>Temperature gradients</subject><subject>Temperature sensors</subject><subject>thermal flow sensor</subject><subject>Thermistors</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtKw0AQhhdRsFYfQPBiweu0s4cc9rKEeqKhaCr1btkkkzYlTepui_hYvoJPZkJ74dUw8P3_DB8htwxGjIEav6RpPOLAxUgIJsPAPyMD5vuRx0LxcU4GACzyFAe4JFfObbpVyogNyOuEpofM87dLmrRNW1f7dZXTOJmnXjJNUrpYo92amj7U7RdNsXFVs6JpG9NlR9Lfn4Bux47OqgaNpW-mWeE1uShN7fDmNIfk_WG6iJ-82fzxOZ7MvJwrufcUijKLAJQ0godZlEko80xh4ffvK6WgYIKjEQiSy5BhLlRe5H4pSgloCjEk98fenW0_D-j2etMebNOd1AKkDEQQMtZR7EjltnXOYql3ttoa-60Z6N6c7s3p3pw-mesyd8dMhYj_eB6AYIH4A1-gZ40</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Xu, Wei</creator><creator>Li, Zhijuan</creator><creator>Fang, Zetao</creator><creator>Wang, Bo</creator><creator>Hong, Linze</creator><creator>Yang, Gai</creator><creator>Han, Su-Ting</creator><creator>Zhao, Xiaojin</creator><creator>Wang, Xiaoyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0002-9359-4869</orcidid><orcidid>https://orcid.org/0009-0003-9109-6115</orcidid><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></search><sort><creationdate>20240501</creationdate><title>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</title><author>Xu, Wei ; Li, Zhijuan ; Fang, Zetao ; Wang, Bo ; Hong, Linze ; Yang, Gai ; Han, Su-Ting ; Zhao, Xiaojin ; Wang, Xiaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-9e3fb80094a327b8b40fcb9ed514769990d132ea3e042471ec39cdc5f3f40ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CMOS</topic><topic>CMOS interface</topic><topic>complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration</topic><topic>Control equipment</topic><topic>Fluid flow</topic><topic>gas flow</topic><topic>linear range</topic><topic>low power</topic><topic>Low power electronics</topic><topic>MEMS</topic><topic>Microelectromechanical systems</topic><topic>Monolithic integrated circuits</topic><topic>Peclet number</topic><topic>Semiconductor device measurement</topic><topic>Sensitivity</topic><topic>Sensor systems</topic><topic>System-on-chip</topic><topic>Temperature gradients</topic><topic>Temperature sensors</topic><topic>thermal flow sensor</topic><topic>Thermistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Li, Zhijuan</creatorcontrib><creatorcontrib>Fang, Zetao</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Hong, Linze</creatorcontrib><creatorcontrib>Yang, Gai</creatorcontrib><creatorcontrib>Han, Su-Ting</creatorcontrib><creatorcontrib>Zhao, Xiaojin</creatorcontrib><creatorcontrib>Wang, Xiaoyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Wei</au><au>Li, Zhijuan</au><au>Fang, Zetao</au><au>Wang, Bo</au><au>Hong, Linze</au><au>Yang, Gai</au><au>Han, Su-Ting</au><au>Zhao, Xiaojin</au><au>Wang, Xiaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>59</volume><issue>5</issue><spage>1486</spage><epage>1496</epage><pages>1486-1496</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>/s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3314765</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6196-3693</orcidid><orcidid>https://orcid.org/0000-0002-6286-3085</orcidid><orcidid>https://orcid.org/0000-0002-9359-4869</orcidid><orcidid>https://orcid.org/0009-0003-9109-6115</orcidid><orcidid>https://orcid.org/0000-0002-9965-3516</orcidid><orcidid>https://orcid.org/0000-0003-3392-7569</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2024-05, Vol.59 (5), p.1486-1496
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2023_3314765
source IEEE Electronic Library (IEL)
subjects CMOS
CMOS interface
complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integration
Control equipment
Fluid flow
gas flow
linear range
low power
Low power electronics
MEMS
Microelectromechanical systems
Monolithic integrated circuits
Peclet number
Semiconductor device measurement
Sensitivity
Sensor systems
System-on-chip
Temperature gradients
Temperature sensors
thermal flow sensor
Thermistors
title A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T10%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sub-5mW%20Monolithic%20CMOS-MEMS%20Thermal%20Flow%20Sensing%20SoC%20With%20%C2%B16%20m/s%20Linear%20Range&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Xu,%20Wei&rft.date=2024-05-01&rft.volume=59&rft.issue=5&rft.spage=1486&rft.epage=1496&rft.pages=1486-1496&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3314765&rft_dat=%3Cproquest_RIE%3E3044636711%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044636711&rft_id=info:pmid/&rft_ieee_id=10260316&rfr_iscdi=true