A Sub-5mW Monolithic CMOS-MEMS Thermal Flow Sensing SoC With ±6 m/s Linear Range
This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2024-05, Vol.59 (5), p.1486-1496 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a complementary metal-oxide semiconductor (CMOS)-microelectromechanical system (MEMS) monolithic integrated thermal flow sensor system, which consists of a MEMS sensor with dual pairs of thermistors, a precise constant temperature difference (CTD) control circuit, and a low-noise readout circuit with a current feedback instrument amplifier (CFIA). The MEMS sensor is fabricated using an in-house developed post-CMOS process, while its sensing structure is thinned to 2.52 \mu \text{m} for power reduction. Meanwhile, the distance between the microheater and thermistors is optimized with a linear range of larger than ±4 m/s by the Peclet number (Pe) < 1 criterion. The designed CTD control circuit can offer a driving current of 1.88 mA with an output swing of up to 2.82 V, which enables the microheater to operate in 50-K CTD mode with a deviation of less than 0.01 K. Additionally, the designed CFIA has a noise floor of 12.4 nV/rtHz with a 1/f corner of less than 400 mHz. The performance of the system-on-chip (SoC) sensor is evaluated with N2 gas flow. The SoC sensor has a high sensitivity of 156 mV/(m/s) with a detectable flow range of up to ±11 m/s, while its system power is less than 5 mW. The SoC sensor also has state-of-the-art linearity in a range of ±6 m/s and a detection limit down to 86 \mu \text{m} /s. Moreover, the tested results of this SoC sensor are in good agreement with the theoretical models, confirming the feasibility of the proposed design strategy. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2023.3314765 |