Improving SIMO-Regulated Digital SoC Energy Efficiencies Through Adaptive Clocking and Concurrent Domain Control

Single-inductor multiple-output (SIMO) voltage regulators allow multiple voltage domains to share a single inductor, thus representing a domain-scalable approach to energy-efficient integrated voltage regulation (IVR). However, poor transient response and significant supply voltage ( {V_{{\mathrm {d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2022-01, Vol.57 (1), p.90-102
Hauptverfasser: Huang, Chi-Hsiang, Chen, Yidong, Sun, Xun, Mandal, Arindam, Pamula, Venkata Rajesh, Kurd, Nasser, Sathe, Visvesh S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-inductor multiple-output (SIMO) voltage regulators allow multiple voltage domains to share a single inductor, thus representing a domain-scalable approach to energy-efficient integrated voltage regulation (IVR). However, poor transient response and significant supply voltage ( {V_{{\mathrm {dd}}} ) ripple in SIMO regulators induce severe voltage margins. This article quantifies the prohibitive energy-efficiency impact of these margins and proposes two techniques to address them: dynamic droop allocation (DDA) through concurrent domain- {V_{{\mathrm {dd}}} control and adaptive clocking using the UniCap architecture. We demonstrate the effectiveness of both techniques on an integrated four-domain SIMO system on chip (SoC) in 65-nm CMOS. Measurements indicate that, compared to conventional SIMO implementations, {V_{{\mathrm {dd}}} guardband reductions obtained by UniCaP (98%) and DDA (40%) reduce total system power draw by 53% and 31% respectively.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2021.3102603