Improving SIMO-Regulated Digital SoC Energy Efficiencies Through Adaptive Clocking and Concurrent Domain Control
Single-inductor multiple-output (SIMO) voltage regulators allow multiple voltage domains to share a single inductor, thus representing a domain-scalable approach to energy-efficient integrated voltage regulation (IVR). However, poor transient response and significant supply voltage ( {V_{{\mathrm {d...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2022-01, Vol.57 (1), p.90-102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-inductor multiple-output (SIMO) voltage regulators allow multiple voltage domains to share a single inductor, thus representing a domain-scalable approach to energy-efficient integrated voltage regulation (IVR). However, poor transient response and significant supply voltage ( {V_{{\mathrm {dd}}} ) ripple in SIMO regulators induce severe voltage margins. This article quantifies the prohibitive energy-efficiency impact of these margins and proposes two techniques to address them: dynamic droop allocation (DDA) through concurrent domain- {V_{{\mathrm {dd}}} control and adaptive clocking using the UniCap architecture. We demonstrate the effectiveness of both techniques on an integrated four-domain SIMO system on chip (SoC) in 65-nm CMOS. Measurements indicate that, compared to conventional SIMO implementations, {V_{{\mathrm {dd}}} guardband reductions obtained by UniCaP (98%) and DDA (40%) reduce total system power draw by 53% and 31% respectively. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2021.3102603 |