ULPAC: A Miniaturized Ultralow-Power Atomic Clock

This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2019-11, Vol.54 (11), p.3135-3148
Hauptverfasser: Zhang, Haosheng, Okada, Kenichi, Herdian, Hans, Narayanan, Aravind Tharayil, Shirane, Atsushi, Suzuki, Mitsuru, Harasaka, Kazuhiro, Adachi, Kazuhiko, Goka, Shigeyoshi, Yanagimachi, Shinya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3148
container_issue 11
container_start_page 3135
container_title IEEE journal of solid-state circuits
container_volume 54
creator Zhang, Haosheng
Okada, Kenichi
Herdian, Hans
Narayanan, Aravind Tharayil
Shirane, Atsushi
Suzuki, Mitsuru
Harasaka, Kazuhiro
Adachi, Kazuhiko
Goka, Shigeyoshi
Yanagimachi, Shinya
description This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .
doi_str_mv 10.1109/JSSC.2019.2941004
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2019_2941004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8861080</ieee_id><sourcerecordid>2308293644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zi_NrG8heKVioS34tmw3G0hNu3WTUvTXm1LxaTjwnTPwMXaNMEIEffc6mxUjDqhHXEsEkCdsgEpRipn4OGUDAKRUc4BzdtG2qz5KSThguJhM8-I-yZO3elPbbhfrH18mi6aLtgn7dBr2PiZ5F9a1S4omuM9LdlbZpvVXf3fI5o8P8-I5nbw_vRT5JHVC6S7likogvaRxJqzIpCKrS07CewVeusoubWkJSgsZLyuLmi-Ba0WZIG-dE0N2e5zdxvC1821nVmEXN_1HwwUQ12IsZU_hkXIxtG30ldnGem3jt0EwBzHmIMYcxJg_MX3n5tipvff_PNEYgUD8Al6_XOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308293644</pqid></control><display><type>article</type><title>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haosheng ; Okada, Kenichi ; Herdian, Hans ; Narayanan, Aravind Tharayil ; Shirane, Atsushi ; Suzuki, Mitsuru ; Harasaka, Kazuhiro ; Adachi, Kazuhiko ; Goka, Shigeyoshi ; Yanagimachi, Shinya</creator><creatorcontrib>Zhang, Haosheng ; Okada, Kenichi ; Herdian, Hans ; Narayanan, Aravind Tharayil ; Shirane, Atsushi ; Suzuki, Mitsuru ; Harasaka, Kazuhiro ; Adachi, Kazuhiko ; Goka, Shigeyoshi ; Yanagimachi, Shinya</creatorcontrib><description>This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2941004</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic clock ; Atomic clocks ; Circuit stability ; CMOS ; coherent population trapping (CPT) ; Crystal oscillators ; Frequency modulation ; Frequency stability ; Laser stability ; Locking ; Microwave frequencies ; Nuclear energy ; phase-locked loop (PLL) ; Power consumption ; quantum package ; quantum technologies ; Resonant frequency ; satellite constellations ; soft-error tolerant ; Stability analysis ; Temperature control ; Vertical cavity surface emitting lasers ; verticalcavity surface-emitting laser (VCSEL) ; voltage-controlled oscillator (VCO)</subject><ispartof>IEEE journal of solid-state circuits, 2019-11, Vol.54 (11), p.3135-3148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</citedby><cites>FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</cites><orcidid>0000-0002-1082-7672 ; 0000-0002-8667-3892 ; 0000-0002-6053-6603 ; 0000-0003-4956-7844 ; 0000-0002-3413-8249 ; 0000-0002-9953-9836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8861080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8861080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haosheng</creatorcontrib><creatorcontrib>Okada, Kenichi</creatorcontrib><creatorcontrib>Herdian, Hans</creatorcontrib><creatorcontrib>Narayanan, Aravind Tharayil</creatorcontrib><creatorcontrib>Shirane, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Mitsuru</creatorcontrib><creatorcontrib>Harasaka, Kazuhiro</creatorcontrib><creatorcontrib>Adachi, Kazuhiko</creatorcontrib><creatorcontrib>Goka, Shigeyoshi</creatorcontrib><creatorcontrib>Yanagimachi, Shinya</creatorcontrib><title>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .</description><subject>Atomic clock</subject><subject>Atomic clocks</subject><subject>Circuit stability</subject><subject>CMOS</subject><subject>coherent population trapping (CPT)</subject><subject>Crystal oscillators</subject><subject>Frequency modulation</subject><subject>Frequency stability</subject><subject>Laser stability</subject><subject>Locking</subject><subject>Microwave frequencies</subject><subject>Nuclear energy</subject><subject>phase-locked loop (PLL)</subject><subject>Power consumption</subject><subject>quantum package</subject><subject>quantum technologies</subject><subject>Resonant frequency</subject><subject>satellite constellations</subject><subject>soft-error tolerant</subject><subject>Stability analysis</subject><subject>Temperature control</subject><subject>Vertical cavity surface emitting lasers</subject><subject>verticalcavity surface-emitting laser (VCSEL)</subject><subject>voltage-controlled oscillator (VCO)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zi_NrG8heKVioS34tmw3G0hNu3WTUvTXm1LxaTjwnTPwMXaNMEIEffc6mxUjDqhHXEsEkCdsgEpRipn4OGUDAKRUc4BzdtG2qz5KSThguJhM8-I-yZO3elPbbhfrH18mi6aLtgn7dBr2PiZ5F9a1S4omuM9LdlbZpvVXf3fI5o8P8-I5nbw_vRT5JHVC6S7likogvaRxJqzIpCKrS07CewVeusoubWkJSgsZLyuLmi-Ba0WZIG-dE0N2e5zdxvC1821nVmEXN_1HwwUQ12IsZU_hkXIxtG30ldnGem3jt0EwBzHmIMYcxJg_MX3n5tipvff_PNEYgUD8Al6_XOQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Haosheng</creator><creator>Okada, Kenichi</creator><creator>Herdian, Hans</creator><creator>Narayanan, Aravind Tharayil</creator><creator>Shirane, Atsushi</creator><creator>Suzuki, Mitsuru</creator><creator>Harasaka, Kazuhiro</creator><creator>Adachi, Kazuhiko</creator><creator>Goka, Shigeyoshi</creator><creator>Yanagimachi, Shinya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1082-7672</orcidid><orcidid>https://orcid.org/0000-0002-8667-3892</orcidid><orcidid>https://orcid.org/0000-0002-6053-6603</orcidid><orcidid>https://orcid.org/0000-0003-4956-7844</orcidid><orcidid>https://orcid.org/0000-0002-3413-8249</orcidid><orcidid>https://orcid.org/0000-0002-9953-9836</orcidid></search><sort><creationdate>20191101</creationdate><title>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</title><author>Zhang, Haosheng ; Okada, Kenichi ; Herdian, Hans ; Narayanan, Aravind Tharayil ; Shirane, Atsushi ; Suzuki, Mitsuru ; Harasaka, Kazuhiro ; Adachi, Kazuhiko ; Goka, Shigeyoshi ; Yanagimachi, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic clock</topic><topic>Atomic clocks</topic><topic>Circuit stability</topic><topic>CMOS</topic><topic>coherent population trapping (CPT)</topic><topic>Crystal oscillators</topic><topic>Frequency modulation</topic><topic>Frequency stability</topic><topic>Laser stability</topic><topic>Locking</topic><topic>Microwave frequencies</topic><topic>Nuclear energy</topic><topic>phase-locked loop (PLL)</topic><topic>Power consumption</topic><topic>quantum package</topic><topic>quantum technologies</topic><topic>Resonant frequency</topic><topic>satellite constellations</topic><topic>soft-error tolerant</topic><topic>Stability analysis</topic><topic>Temperature control</topic><topic>Vertical cavity surface emitting lasers</topic><topic>verticalcavity surface-emitting laser (VCSEL)</topic><topic>voltage-controlled oscillator (VCO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haosheng</creatorcontrib><creatorcontrib>Okada, Kenichi</creatorcontrib><creatorcontrib>Herdian, Hans</creatorcontrib><creatorcontrib>Narayanan, Aravind Tharayil</creatorcontrib><creatorcontrib>Shirane, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Mitsuru</creatorcontrib><creatorcontrib>Harasaka, Kazuhiro</creatorcontrib><creatorcontrib>Adachi, Kazuhiko</creatorcontrib><creatorcontrib>Goka, Shigeyoshi</creatorcontrib><creatorcontrib>Yanagimachi, Shinya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haosheng</au><au>Okada, Kenichi</au><au>Herdian, Hans</au><au>Narayanan, Aravind Tharayil</au><au>Shirane, Atsushi</au><au>Suzuki, Mitsuru</au><au>Harasaka, Kazuhiro</au><au>Adachi, Kazuhiko</au><au>Goka, Shigeyoshi</au><au>Yanagimachi, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>54</volume><issue>11</issue><spage>3135</spage><epage>3148</epage><pages>3135-3148</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2019.2941004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1082-7672</orcidid><orcidid>https://orcid.org/0000-0002-8667-3892</orcidid><orcidid>https://orcid.org/0000-0002-6053-6603</orcidid><orcidid>https://orcid.org/0000-0003-4956-7844</orcidid><orcidid>https://orcid.org/0000-0002-3413-8249</orcidid><orcidid>https://orcid.org/0000-0002-9953-9836</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2019-11, Vol.54 (11), p.3135-3148
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2019_2941004
source IEEE Electronic Library (IEL)
subjects Atomic clock
Atomic clocks
Circuit stability
CMOS
coherent population trapping (CPT)
Crystal oscillators
Frequency modulation
Frequency stability
Laser stability
Locking
Microwave frequencies
Nuclear energy
phase-locked loop (PLL)
Power consumption
quantum package
quantum technologies
Resonant frequency
satellite constellations
soft-error tolerant
Stability analysis
Temperature control
Vertical cavity surface emitting lasers
verticalcavity surface-emitting laser (VCSEL)
voltage-controlled oscillator (VCO)
title ULPAC: A Miniaturized Ultralow-Power Atomic Clock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ULPAC:%20A%20Miniaturized%20Ultralow-Power%20Atomic%20Clock&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Zhang,%20Haosheng&rft.date=2019-11-01&rft.volume=54&rft.issue=11&rft.spage=3135&rft.epage=3148&rft.pages=3135-3148&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2019.2941004&rft_dat=%3Cproquest_RIE%3E2308293644%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308293644&rft_id=info:pmid/&rft_ieee_id=8861080&rfr_iscdi=true