ULPAC: A Miniaturized Ultralow-Power Atomic Clock
This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power con...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2019-11, Vol.54 (11), p.3135-3148 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3148 |
---|---|
container_issue | 11 |
container_start_page | 3135 |
container_title | IEEE journal of solid-state circuits |
container_volume | 54 |
creator | Zhang, Haosheng Okada, Kenichi Herdian, Hans Narayanan, Aravind Tharayil Shirane, Atsushi Suzuki, Mitsuru Harasaka, Kazuhiro Adachi, Kazuhiko Goka, Shigeyoshi Yanagimachi, Shinya |
description | This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 . |
doi_str_mv | 10.1109/JSSC.2019.2941004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2019_2941004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8861080</ieee_id><sourcerecordid>2308293644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zi_NrG8heKVioS34tmw3G0hNu3WTUvTXm1LxaTjwnTPwMXaNMEIEffc6mxUjDqhHXEsEkCdsgEpRipn4OGUDAKRUc4BzdtG2qz5KSThguJhM8-I-yZO3elPbbhfrH18mi6aLtgn7dBr2PiZ5F9a1S4omuM9LdlbZpvVXf3fI5o8P8-I5nbw_vRT5JHVC6S7likogvaRxJqzIpCKrS07CewVeusoubWkJSgsZLyuLmi-Ba0WZIG-dE0N2e5zdxvC1821nVmEXN_1HwwUQ12IsZU_hkXIxtG30ldnGem3jt0EwBzHmIMYcxJg_MX3n5tipvff_PNEYgUD8Al6_XOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308293644</pqid></control><display><type>article</type><title>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haosheng ; Okada, Kenichi ; Herdian, Hans ; Narayanan, Aravind Tharayil ; Shirane, Atsushi ; Suzuki, Mitsuru ; Harasaka, Kazuhiro ; Adachi, Kazuhiko ; Goka, Shigeyoshi ; Yanagimachi, Shinya</creator><creatorcontrib>Zhang, Haosheng ; Okada, Kenichi ; Herdian, Hans ; Narayanan, Aravind Tharayil ; Shirane, Atsushi ; Suzuki, Mitsuru ; Harasaka, Kazuhiro ; Adachi, Kazuhiko ; Goka, Shigeyoshi ; Yanagimachi, Shinya</creatorcontrib><description>This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2941004</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic clock ; Atomic clocks ; Circuit stability ; CMOS ; coherent population trapping (CPT) ; Crystal oscillators ; Frequency modulation ; Frequency stability ; Laser stability ; Locking ; Microwave frequencies ; Nuclear energy ; phase-locked loop (PLL) ; Power consumption ; quantum package ; quantum technologies ; Resonant frequency ; satellite constellations ; soft-error tolerant ; Stability analysis ; Temperature control ; Vertical cavity surface emitting lasers ; verticalcavity surface-emitting laser (VCSEL) ; voltage-controlled oscillator (VCO)</subject><ispartof>IEEE journal of solid-state circuits, 2019-11, Vol.54 (11), p.3135-3148</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</citedby><cites>FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</cites><orcidid>0000-0002-1082-7672 ; 0000-0002-8667-3892 ; 0000-0002-6053-6603 ; 0000-0003-4956-7844 ; 0000-0002-3413-8249 ; 0000-0002-9953-9836</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8861080$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8861080$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haosheng</creatorcontrib><creatorcontrib>Okada, Kenichi</creatorcontrib><creatorcontrib>Herdian, Hans</creatorcontrib><creatorcontrib>Narayanan, Aravind Tharayil</creatorcontrib><creatorcontrib>Shirane, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Mitsuru</creatorcontrib><creatorcontrib>Harasaka, Kazuhiro</creatorcontrib><creatorcontrib>Adachi, Kazuhiko</creatorcontrib><creatorcontrib>Goka, Shigeyoshi</creatorcontrib><creatorcontrib>Yanagimachi, Shinya</creatorcontrib><title>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .</description><subject>Atomic clock</subject><subject>Atomic clocks</subject><subject>Circuit stability</subject><subject>CMOS</subject><subject>coherent population trapping (CPT)</subject><subject>Crystal oscillators</subject><subject>Frequency modulation</subject><subject>Frequency stability</subject><subject>Laser stability</subject><subject>Locking</subject><subject>Microwave frequencies</subject><subject>Nuclear energy</subject><subject>phase-locked loop (PLL)</subject><subject>Power consumption</subject><subject>quantum package</subject><subject>quantum technologies</subject><subject>Resonant frequency</subject><subject>satellite constellations</subject><subject>soft-error tolerant</subject><subject>Stability analysis</subject><subject>Temperature control</subject><subject>Vertical cavity surface emitting lasers</subject><subject>verticalcavity surface-emitting laser (VCSEL)</subject><subject>voltage-controlled oscillator (VCO)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zi_NrG8heKVioS34tmw3G0hNu3WTUvTXm1LxaTjwnTPwMXaNMEIEffc6mxUjDqhHXEsEkCdsgEpRipn4OGUDAKRUc4BzdtG2qz5KSThguJhM8-I-yZO3elPbbhfrH18mi6aLtgn7dBr2PiZ5F9a1S4omuM9LdlbZpvVXf3fI5o8P8-I5nbw_vRT5JHVC6S7likogvaRxJqzIpCKrS07CewVeusoubWkJSgsZLyuLmi-Ba0WZIG-dE0N2e5zdxvC1821nVmEXN_1HwwUQ12IsZU_hkXIxtG30ldnGem3jt0EwBzHmIMYcxJg_MX3n5tipvff_PNEYgUD8Al6_XOQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Haosheng</creator><creator>Okada, Kenichi</creator><creator>Herdian, Hans</creator><creator>Narayanan, Aravind Tharayil</creator><creator>Shirane, Atsushi</creator><creator>Suzuki, Mitsuru</creator><creator>Harasaka, Kazuhiro</creator><creator>Adachi, Kazuhiko</creator><creator>Goka, Shigeyoshi</creator><creator>Yanagimachi, Shinya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1082-7672</orcidid><orcidid>https://orcid.org/0000-0002-8667-3892</orcidid><orcidid>https://orcid.org/0000-0002-6053-6603</orcidid><orcidid>https://orcid.org/0000-0003-4956-7844</orcidid><orcidid>https://orcid.org/0000-0002-3413-8249</orcidid><orcidid>https://orcid.org/0000-0002-9953-9836</orcidid></search><sort><creationdate>20191101</creationdate><title>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</title><author>Zhang, Haosheng ; Okada, Kenichi ; Herdian, Hans ; Narayanan, Aravind Tharayil ; Shirane, Atsushi ; Suzuki, Mitsuru ; Harasaka, Kazuhiro ; Adachi, Kazuhiko ; Goka, Shigeyoshi ; Yanagimachi, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-258d089b8673a37458a9d283ee50e4cfabada80da072dfa192b02958738eacc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic clock</topic><topic>Atomic clocks</topic><topic>Circuit stability</topic><topic>CMOS</topic><topic>coherent population trapping (CPT)</topic><topic>Crystal oscillators</topic><topic>Frequency modulation</topic><topic>Frequency stability</topic><topic>Laser stability</topic><topic>Locking</topic><topic>Microwave frequencies</topic><topic>Nuclear energy</topic><topic>phase-locked loop (PLL)</topic><topic>Power consumption</topic><topic>quantum package</topic><topic>quantum technologies</topic><topic>Resonant frequency</topic><topic>satellite constellations</topic><topic>soft-error tolerant</topic><topic>Stability analysis</topic><topic>Temperature control</topic><topic>Vertical cavity surface emitting lasers</topic><topic>verticalcavity surface-emitting laser (VCSEL)</topic><topic>voltage-controlled oscillator (VCO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haosheng</creatorcontrib><creatorcontrib>Okada, Kenichi</creatorcontrib><creatorcontrib>Herdian, Hans</creatorcontrib><creatorcontrib>Narayanan, Aravind Tharayil</creatorcontrib><creatorcontrib>Shirane, Atsushi</creatorcontrib><creatorcontrib>Suzuki, Mitsuru</creatorcontrib><creatorcontrib>Harasaka, Kazuhiro</creatorcontrib><creatorcontrib>Adachi, Kazuhiko</creatorcontrib><creatorcontrib>Goka, Shigeyoshi</creatorcontrib><creatorcontrib>Yanagimachi, Shinya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haosheng</au><au>Okada, Kenichi</au><au>Herdian, Hans</au><au>Narayanan, Aravind Tharayil</au><au>Shirane, Atsushi</au><au>Suzuki, Mitsuru</au><au>Harasaka, Kazuhiro</au><au>Adachi, Kazuhiko</au><au>Goka, Shigeyoshi</au><au>Yanagimachi, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ULPAC: A Miniaturized Ultralow-Power Atomic Clock</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>54</volume><issue>11</issue><spage>3135</spage><epage>3148</epage><pages>3135-3148</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article introduces a chip-scale ultralow-power atomic clock (ULPAC) in the microwave frequency region. A new suspended quantum package architecture along with a fully integrated frequency probing and locking loop implemented in CMOS technology results in a compact package and ultralow-power consumption. In addition, dedicated low-noise magnetic field and temperature control loops are incorporated for isolating and mitigating the internal and external factors affecting the frequency stability. The output frequency of a crystal oscillator is continuously compensated and stabilized by locking to the peak of a coherent population trapping signal, thereby inheriting the superior frequency stability of the atomic resonance. The proposed ULPAC system achieves a frequency stability of 2.2 × 10 -12 at an averaging time of 10 5 s, while consuming 59.9 mW. The frequency probing and locking circuits implemented in a standard 65-nm CMOS process node occupy an area of 2.55 mm 2 . The prototype of this atomic clock occupies a volume of 15 cm 3 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2019.2941004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1082-7672</orcidid><orcidid>https://orcid.org/0000-0002-8667-3892</orcidid><orcidid>https://orcid.org/0000-0002-6053-6603</orcidid><orcidid>https://orcid.org/0000-0003-4956-7844</orcidid><orcidid>https://orcid.org/0000-0002-3413-8249</orcidid><orcidid>https://orcid.org/0000-0002-9953-9836</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2019-11, Vol.54 (11), p.3135-3148 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2019_2941004 |
source | IEEE Electronic Library (IEL) |
subjects | Atomic clock Atomic clocks Circuit stability CMOS coherent population trapping (CPT) Crystal oscillators Frequency modulation Frequency stability Laser stability Locking Microwave frequencies Nuclear energy phase-locked loop (PLL) Power consumption quantum package quantum technologies Resonant frequency satellite constellations soft-error tolerant Stability analysis Temperature control Vertical cavity surface emitting lasers verticalcavity surface-emitting laser (VCSEL) voltage-controlled oscillator (VCO) |
title | ULPAC: A Miniaturized Ultralow-Power Atomic Clock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ULPAC:%20A%20Miniaturized%20Ultralow-Power%20Atomic%20Clock&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Zhang,%20Haosheng&rft.date=2019-11-01&rft.volume=54&rft.issue=11&rft.spage=3135&rft.epage=3148&rft.pages=3135-3148&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2019.2941004&rft_dat=%3Cproquest_RIE%3E2308293644%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308293644&rft_id=info:pmid/&rft_ieee_id=8861080&rfr_iscdi=true |