A Monolithically Integrated Pressure/Oxygen/Temperature Sensing SoC for Multimodality Intracranial Neuromonitoring
A fully integrated SoC for multimodality intracranial neuromonitoring is presented in this paper. Three sensors including a capacitive MEMS pressure sensor, an electrochemical oxygen sensor and a solid-state temperature sensor are integrated together in a single chip with their respective interface...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2014-11, Vol.49 (11), p.2449-2461 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A fully integrated SoC for multimodality intracranial neuromonitoring is presented in this paper. Three sensors including a capacitive MEMS pressure sensor, an electrochemical oxygen sensor and a solid-state temperature sensor are integrated together in a single chip with their respective interface circuits. Chopper stabilization and dynamic element matching techniques are applied in sensor interface circuits to reduce circuit noise and offset. On-chip calibration is implemented for each sensor to compensate process variations. Measured sensitivity of the pressure, oxygen, and temperature sensors are 18.6 aF/mmHg, 194 pA/mmHg, and 2 mV/°C, respectively. Implemented in 0.18 m CMOS, the SoC occupies an area of 1.4 mm × 4 mm and consumes 166 μW DC power. A prototype catheter for intracranial pressure (ICP) monitoring has been implemented and the performance has been verified with ex vivo experiment. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2014.2345754 |