Development of the Self-Aligned Titanium Silicide Process for VLSI Applications
A manufacturable self-aligned titanium silicide process which simultaneously silicides both polysilicon gates and junctions has been developed for VLSI applications. The process produces silicided gates and junctions with sheet resistances of 1.0-2.0 Omega/square. This paper describes the applicatio...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 1985-02, Vol.20 (1), p.61-69 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A manufacturable self-aligned titanium silicide process which simultaneously silicides both polysilicon gates and junctions has been developed for VLSI applications. The process produces silicided gates and junctions with sheet resistances of 1.0-2.0 Omega/square. This paper describes the application of the self-aligned titanium silicide process to NMOS VLSI circuits of the 64K SRAM class with 1-/spl mu/m gate lengths. Comparison of circuit yield data and test structure parameters from devices fabricated with and without the silicidation process has demonstrated that the self-aligned silicide process is compatible with both VLSI NMOS and CMOS technologies. The self-aligned titanium silicide process has some very significant manufacturing advantages over the more conventional deposited silicide on polysilicon technologies. In particular, the problems associated with etching and depositing a polycide gate stack are eliminated with the self-aligned process since the polycide etch is replaced with a much more straightforward polysilicon only etch. As gate lengths, gate oxide thicknesses, and source-drain junction depths are scaled, Iinewidth control, etch selectivity to the underlying gate oxide, and cross-sectional profile control become more critical. The stringent etch requirements are more easily satisfied with the self-aligned silicide process. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.1985.1052277 |