An Edge-Detection Method for Capsule Defect on Embedded Platform

An edge intelligent detection method is proposed for identifying defects of medicinal capsules in this article, employing a lightweight convolutional neural network (CNN) model. The approach involves compressing the CNN model and optimizing the channel parameters such that the model becomes lightwei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-11, Vol.24 (22), p.37445-37454
Hauptverfasser: Zhou, Junlin, Wang, Xindi, Lu, Yihuai, Wu, Qun, Ding, Xiang, Liu, Yongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An edge intelligent detection method is proposed for identifying defects of medicinal capsules in this article, employing a lightweight convolutional neural network (CNN) model. The approach involves compressing the CNN model and optimizing the channel parameters such that the model becomes lightweight and suitable for edge-embedded devices. The lightweight model was then trained on a computer to optimize network parameters. Next, the optimized parameters were transplanted onto a field-programmable gate array (FPGA)-based edge detection device to detect the defects of medicinal capsules. The experimental results demonstrate that a lightweight network model can be successfully deployed on an FPGA-based edge detection apparatus, achieving an average identification accuracy of 95.50% for capsule defects. The proposed method provides an effective solution for intelligent edge detection in the medicinal-capsule production process.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2024.3468429